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THE SOIL AND WATER ASSESSMENT TOOL:
HISTORICAL DEVELOPMENT, APPLICATIONS,

AND FUTURE RESEARCH DIRECTIONS Invited Review Series

P. W. Gassman,  M. R. Reyes,  C. H. Green,  J. G. Arnold

ABSTRACT. The Soil and Water Assessment Tool (SWAT) model is a continuation of nearly 30 years of modeling efforts
conducted by the USDA Agricultural Research Service (ARS). SWAT has gained international acceptance as a robust
interdisciplinary watershed modeling tool as evidenced by international SWAT conferences, hundreds of SWAT‐related papers
presented at numerous other scientific meetings, and dozens of articles published in peer‐reviewed journals. The model has
also been adopted as part of the U.S. Environmental Protection Agency (USEPA) Better Assessment Science Integrating Point
and Nonpoint Sources (BASINS) software package and is being used by many U.S. federal and state agencies, including the
USDA within the Conservation Effects Assessment Project (CEAP). At present, over 250 peer‐reviewed published articles
have been identified that report SWAT applications, reviews of SWAT components, or other research that includes SWAT. Many
of these peer‐reviewed articles are summarized here according to relevant application categories such as streamflow
calibration and related hydrologic analyses, climate change impacts on hydrology, pollutant load assessments, comparisons
with other models, and sensitivity analyses and calibration techniques. Strengths and weaknesses of the model are presented,
and recommended research needs for SWAT are also provided.
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he Soil and Water Assessment Tool (SWAT) model
(Arnold et al., 1998; Arnold and Fohrer, 2005) has
proven to be an effective tool for assessing water re‐
source and nonpoint‐source pollution problems for

a wide range of scales and environmental conditions across
the globe. In the U.S., SWAT is increasingly being used to
support Total Maximum Daily Load (TMDL) analyses (Bo‐
rah et al., 2006), research the effectiveness of conservation
practices within the USDA Conservation Effects Assessment
Program (CEAP, 2007) initiative (Mausbach and Dedrick,
2004), perform “macro‐scale assessments” for large regions
such as the upper Mississippi River basin and the entire U.S.
(e.g., Arnold et al., 1999a; Jha et al., 2006), and a wide range
of other water use and water quality applications. Similar
SWAT application trends have also emerged in Europe and
other regions, as shown by the variety of studies presented in
four previous European international SWAT conferences,
which are reported for the first conference in a special issue
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of Hydrological Processes (volume 19, issue 3) and  proceed‐
ings for the second (TWRI, 2003), third (EAWAG, 2005), and
fourth (UNESCO-IHE, 2007) conferences.

Reviews of SWAT applications and/or components have
been previously reported, sometimes in conjunction with
comparisons with other models (e.g., Arnold and Fohrer,
2005; Borah and Bera, 2003, 2004; Shepherd et al., 1999).
However, these previous reviews do not provide a compre‐
hensive overview of the complete body of SWAT applica‐
tions that have been reported in the peer‐reviewed literature.
There is a need to fill this gap by providing a review of the
full range of studies that have been conducted with SWAT and
to highlight emerging application trends. Thus, the specific
objectives of this study are to: (1) provide an overview of
SWAT development history, including the development of
GIS interface tools and examples of modified SWAT models;
(2) summarize research findings or methods for many of the
more than 250 peer‐reviewed articles that have been identi‐
fied in the literature, as a function of different application
categories; and (3) describe key strengths and weaknesses of
the model and list a summary of future research needs.

SWAT DEVELOPMENTAL HISTORY AND

OVERVIEW
The development of SWAT is a continuation of USDA

Agricultural Research Service (ARS) modeling experience
that spans a period of roughly 30 years. Early origins of
SWAT can be traced to previously developed USDA‐ARS
models (fig. 1) including the Chemicals, Runoff, and Erosion
from Agricultural Management Systems (CREAMS) model
(Knisel, 1980), the Groundwater Loading Effects on

T



1212 TRANSACTIONS OF THE ASABE

Figure 1. Schematic of SWAT developmental history, including selected SWAT adaptations.

Agricultural Management Systems (GLEAMS) model
(Leonard et al., 1987), and the Environmental Impact Policy
Climate (EPIC) model (Izaurralde et al., 2006), which was
originally called the Erosion Productivity Impact Calculator
(Williams, 1990). The current SWAT model is a direct de‐
scendant of the Simulator for Water Resources in Rural Ba‐
sins (SWRRB) model (Arnold and Williams, 1987), which
was designed to simulate management impacts on water and
sediment movement for ungauged rural basins across the
U.S.

Development of SWRRB began in the early 1980s with
modification of the daily rainfall hydrology model from
CREAMS. A major enhancement was the expansion of sur‐
face runoff and other computations for up to ten subbasins,
as opposed to a single field, to predict basin water yield. Oth‐
er enhancements included an improved peak runoff rate
method, calculation of transmission losses, and the addition
of several new components: groundwater return flow (Arnold
and Allen, 1993), reservoir storage, the EPIC crop growth
submodel, a weather generator, and sediment transport. Fur‐
ther modifications of SWRRB in the late 1980s included the
incorporation of the GLEAMS pesticide fate component, op‐
tional USDA‐SCS technology for estimating peak runoff
rates, and newly developed sediment yield equations. These
modifications extended the model's capability to deal with a
wide variety of watershed water quality management prob‐
lems.

Arnold et al. (1995b) developed the Routing Outputs to
Outlet (ROTO) model in the early 1990s in order to support
an assessment of the downstream impact of water manage‐
ment within Indian reservation lands in Arizona and New
Mexico that covered several thousand square kilometers, as
requested by the U.S. Bureau of Indian Affairs. The analysis
was performed by linking output from multiple SWRRB runs
and then routing the flows through channels and reservoirs in
ROTO via a reach routing approach. This methodology over‐
came the SWRRB limitation of allowing only ten subbasins;
however, the input and output of multiple SWRRB files was
cumbersome and required considerable computer storage. To
overcome the awkwardness of this arrangement, SWRRB
and ROTO were merged into the single SWAT model (fig. 1).
SWAT retained all the features that made SWRRB such a

valuable simulation model, while allowing simulations of
very extensive areas.

SWAT has undergone continued review and expansion of
capabilities  since it was created in the early 1990s. Key en‐
hancements for previous versions of the model (SWAT94.2,
96.2, 98.1, 99.2, and 2000) are described by Arnold and Foh‐
rer (2005) and Neitsch et al. (2005a), including the incorpora‐
tion of in‐stream kinetic routines from the QUAL2E model
(Brown and Barnwell, 1987), as shown in figure 1. Documen‐
tation for some previous versions of the model is available at
the SWAT web site (SWAT, 2007d). Detailed theoretical doc‐
umentation and a user's manual for the latest version of the
model (SWAT2005) are given by Neitsch et al. (2005a,
2005b). The current version of the model is briefly described
here to provide an overview of the model structure and execu‐
tion approach.

SWAT OVERVIEW

SWAT is a basin‐scale, continuous‐time model that oper‐
ates on a daily time step and is designed to predict the impact
of management on water, sediment, and agricultural chemi‐
cal yields in ungauged watersheds. The model is physically
based, computationally efficient, and capable of continuous
simulation over long time periods. Major model components
include weather, hydrology, soil temperature and properties,
plant growth, nutrients, pesticides, bacteria and pathogens,
and land management. In SWAT, a watershed is divided into
multiple subwatersheds, which are then further subdivided
into hydrologic response units (HRUs) that consist of homo‐
geneous land use, management, and soil characteristics. The
HRUs represent percentages of the subwatershed area and are
not identified spatially within a SWAT simulation. Alterna‐
tively, a watershed can be subdivided into only subwa‐
tersheds that are characterized by dominant land use, soil
type, and management.

Climatic Inputs and HRU Hydrologic Balance
Climatic inputs used in SWAT include daily precipitation,

maximum and minimum temperature, solar radiation data,
relative humidity, and wind speed data, which can be input
from measured records and/or generated. Relative humidity
is required if the Penman‐Monteith (Monteith, 1965) or
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Priestly‐Taylor (Priestly and Taylor, 1972) evapotranspira‐
tion (ET) routines are used; wind speed is only necessary if
the Penman‐Monteith method is used. Measured or generated
sub‐daily precipitation inputs are required if the Green‐Ampt
infiltration method (Green and Ampt, 1911) is selected. The
average air temperature is used to determine if precipitation
should be simulated as snowfall. The maximum and mini‐
mum temperature inputs are used in the calculation of daily
soil and water temperatures. Generated weather inputs are
calculated from tables consisting of 13 monthly climatic
variables, which are derived from long‐term measured
weather records. Customized climatic input data options in‐
clude: (1) simulation of up to ten elevation bands to account
for orographic precipitation and/or for snowmelt calcula‐
tions, (2) adjustments to climate inputs to simulate climate
change, and (3) forecasting of future weather patterns, which
is a new feature in SWAT2005.

The overall hydrologic balance is simulated for each
HRU, including canopy interception of precipitation, parti‐
tioning of precipitation, snowmelt water, and irrigation water
between surface runoff and infiltration, redistribution of wa‐
ter within the soil profile, evapotranspiration, lateral subsur‐
face flow from the soil profile, and return flow from shallow
aquifers. Estimation of areal snow coverage, snowpack tem‐
perature, and snowmelt water is based on the approach de‐
scribed by Fontaine et al. (2002). Three options exist in
SWAT for estimating surface runoff from HRUs, which are
combinations of daily or sub‐hourly rainfall and the USDA
Natural Resources Conservation Service (NRCS) curve num‐
ber (CN) method (USDA‐NRCS, 2004) or the Green‐Ampt
method. Canopy interception is implicit in the CN method,
while explicit canopy interception is simulated for the Green‐
Ampt method.

A storage routing technique is used to calculate redistribu‐
tion of water between layers in the soil profile. Bypass flow
can be simulated, as described by Arnold et al. (2005), for
soils characterized by cracking, such as Vertisols. SWAT2005
also provides a new option to simulate perched water tables
in HRUs that have seasonal high water tables. Three methods
for estimating potential ET are provided: Penman‐Monteith,
Priestly‐Taylor, and Hargreaves (Hargreaves et al., 1985). ET
values estimated external to SWAT can also be input for a
simulation run. The Penman‐Monteith option must be used
for climate change scenarios that account for changing atmo‐
spheric CO2 levels. Recharge below the soil profile is parti‐
tioned between shallow and deep aquifers. Return flow to the
stream system and evapotranspiration from deep‐rooted
plants (termed “revap”) can occur from the shallow aquifer.
Water that recharges the deep aquifer is assumed lost from the
system.

Cropping, Management Inputs, and HRU‐Level Pollutant
Losses

Crop yields and/or biomass output can be estimated for a
wide range of crop rotations, grassland/pasture systems, and
trees with the crop growth submodel. New routines in
SWAT2005 allow for simulation of forest growth from seed‐
ling to mature stand. Planting, harvesting, tillage passes, nu‐
trient applications, and pesticide applications can be
simulated for each cropping system with specific dates or
with a heat unit scheduling approach. Residue and biological
mixing are simulated in response to each tillage operation.
Nitrogen and phosphorus applications can be simulated in the

form of inorganic fertilizer and/or manure inputs. An alterna‐
tive automatic fertilizer routine can be used to simulate fertil‐
izer applications, as a function of nitrogen stress. Biomass
removal and manure deposition can be simulated for grazing
operations. SWAT2005 also features a new continuous ma‐
nure application option to reflect conditions representative of
confined animal feeding operations, which automatically
simulates a specific frequency and quantity of manure to be
applied to a given HRU. The type, rate, timing, application
efficiency, and percentage application to foliage versus soil
can be accounted for simulations of pesticide applications.

Selected conservation and water management practices
can also be simulated in SWAT. Conservation practices that
can be accounted for include terraces, strip cropping, con‐
touring, grassed waterways, filter strips, and conservation
tillage. Simulation of irrigation water on cropland can be
simulated on the basis of five alternative sources: stream
reach, reservoir, shallow aquifer, deep aquifer, or a water
body source external to the watershed. The irrigation applica‐
tions can be simulated for specific dates or with an auto‐
irrigation routine, which triggers irrigation events according
to a water stress threshold. Subsurface tile drainage is simu‐
lated in SWAT2005 with improved routines that are based on
the work performed by Du et al. (2005) and Green et al.
(2006); the simulated tile drains can also be linked to new
routines that simulate the effects of depressional areas (pot‐
holes). Water transfer can also be simulated between differ‐
ent water bodies, as well as “consumptive water use” in
which removal of water from a watershed system is assumed.

HRU‐level and in‐stream pollutant losses can be esti‐
mated with SWAT for sediment, nitrogen, phosphorus, pesti‐
cides, and bacteria. Sediment yield is calculated with the
Modified Universal Soil Loss Equation (MUSLE) developed
by Williams and Berndt (1977); USLE estimates are output
for comparative purposes only. The transformation and
movement of nitrogen and phosphorus within an HRU are
simulated in SWAT as a function of nutrient cycles consisting
of several inorganic and organic pools. Losses of both N and
P from the soil system in SWAT occur by crop uptake and in
surface runoff in both the solution phase and on eroded sedi‐
ment. Simulated losses of N can also occur in percolation be‐
low the root zone, in lateral subsurface flow including tile
drains, and by volatilization to the atmosphere. Accounting
of pesticide fate and transport includes degradation and
losses by volatilization, leaching, on eroded sediment, and in
the solution phase of surface runoff and later subsurface flow.
Bacteria surface runoff losses are simulated in both the solu‐
tion and eroded phases with improved routines in
SWAT2005.

Flow and Pollutant Loss Routing, and Auto‐Calibration
and Uncertainty Analysis

Flows are summed from all HRUs to the subwatershed
level, and then routed through the stream system using either
the variable‐rate storage method (Williams, 1969) or the
Muskingum method (Neitsch et al., 2005a), which are both
variations of the kinematic wave approach. Sediment, nutri‐
ent, pesticide, and bacteria loadings or concentrations from
each HRU are also summed at the subwatershed level, and the
resulting losses are routed through channels, ponds, wet‐
lands, depressional areas, and/or reservoirs to the watershed
outlet. Contributions from point sources and urban areas are
also accounted for in the total flows and pollutant losses ex‐
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ported from each subwatershed. Sediment transport is simu‐
lated as a function of peak channel velocity in SWAT2005,
which is a simplified approach relative to the stream power
methodology used in previous SWAT versions. Simulation of
channel erosion is accounted for with a channel erodibility
factor. In‐stream transformations and kinetics of algae
growth, nitrogen and phosphorus cycling, carbonaceous bio‐
logical oxygen demand, and dissolved oxygen are performed
on the basis of routines developed for the QUAL2E model.
Degradation, volatilization, and other in‐stream processes
are simulated for pesticides, as well as decay of bacteria.
Routing of heavy metals can be simulated; however, no trans‐
formation or decay processes are simulated for these pollu‐
tants.

A final feature in SWAT2005 is a new automated sensitiv‐
ity, calibration, and uncertainty analysis component that is
based on approaches described by van Griensven and Meix‐
ner (2006) and van Griensven et al. (2006b). Further discus‐
sion of these tools is provided in the Sensitivity, Calibration,
and Uncertainty Analyses Section.

SWAT ADAPTATIONS
A key trend that is interwoven with the ongoing develop‐

ment of SWAT is the emergence of modified SWAT models
that have been adapted to provide improved simulation of
specific processes, which in some cases have been focused on
specific regions. Notable examples (fig. 1) include SWAT‐G,
Extended SWAT (ESWAT), and the Soil and Water Integrated
Model (SWIM). The initial SWAT‐G model was developed
by modifying the SWAT99.2 percolation, hydraulic conduc‐
tivity, and interflow functions to provide improved flow pre‐
dictions for typical conditions in low mountain ranges in
Germany (Lenhart et al., 2002). Further SWAT‐G enhance‐
ments include an improved method of estimating erosion loss
(Lenhart et al., 2005) and a more detailed accounting of CO2
effects on leaf area index and stomatal conductance (Eck‐
hardt and Ulbrich, 2003). The ESWAT model (van Griensven
and Bauwens, 2003, 2005) features several modifications rel‐
ative to the original SWAT model including: (1) sub‐hourly
precipitation inputs and infiltration, runoff, and erosion loss
estimates based on a user‐defined fraction of an hour; (2) a
river routing module that is updated on an hourly time step
and is interfaced with a water quality component that features
in‐stream kinetics based partially on functions used in
QUAL2E as well as additional enhancements; and (3) multi‐
objective (multi‐site and/or multi‐variable) calibration and
autocalibration  modules (similar components are now incor‐
porated in SWAT2005). The SWIM model is based primarily
on hydrologic components from SWAT and nutrient cycling
components from the MATSALU model (Krysanova et al.,
1998, 2005) and is designed to simulate “mesoscale” (100 to
100,000 km2) watersheds. Recent improvements to SWIM
include incorporation of a groundwater dynamics submodel
(Hatterman et al., 2004), enhanced capability to simulate for‐
est systems (Wattenbach et al., 2005), and development of
routines to more realistically simulate wetlands and riparian
zones (Hatterman et al., 2006).

GEOGRAPHIC INFORMATION SYSTEM INTERFACES AND

OTHER TOOLS

A second trend that has paralleled the historical develop‐
ment of SWAT is the creation of various Geographic Informa‐

tion System (GIS) and other interface tools to support the
input of topographic, land use, soil, and other digital data into
SWAT. The first GIS interface program developed for SWAT
was SWAT/GRASS, which was built within the GRASS
raster‐based GIS (Srinivasan and Arnold, 1994). Haverkamp
et al. (2005) have adopted SWAT/GRASS within the Input-
OutputSWAT (IOSWAT) software package, which incorpo‐
rates the Topographic Parameterization Tool (TOPAZ) and
other tools to generate inputs and provide output mapping
support for both SWAT and SWAT‐G.

The ArcView‐SWAT (AVSWAT) interface tool (Di Luzio
et al., 2004a, 2004b) is designed to generate model inputs
from ArcView 3.x GIS data layers and execute SWAT2000
within the same framework. AVSWAT was incorporated
within the U.S. Environmental Protection Agency (USEPA)
Better Assessment Science Integrating point and Nonpoint
Sources (BASINS) software package versions 3.0 (USEPA,
2006a), which provides GIS utilities that support automatic
data input for SWAT2000 using ArcView (Di Luzio et al.,
2002). The most recent version of the interface is denoted
AVSWAT‐X, which provides additional input generation
functionality, including soil data input from both the USDA‐
NRCS State Soils Geographic (STATSGO) and Soil Survey
Geographic (SSURGO) databases (USDA‐NRCS, 2007a,
2007b) for applications of SWAT2005 (Di Luzio et al., 2005;
SWAT, 2007b). Automatic sensitivity, calibration, and uncer‐
tainty analysis can also be initiated with AVSWAT‐X for
SWAT2005. The Automated Geospatial Watershed Assess‐
ment (AGWA) interface tool (Miller et al., 2007) is an alter‐
native ArcView‐based interface tool that supports data input
generation for both SWAT2000 and the KINEROS2 model,
including options for soil inputs from the SSURGO, STATS‐
GO, or United Nations Food and Agriculture Organization
(FAO) global soil maps. Both AGWA and AVSWAT have
been incorporated as interface approaches for generating
SWAT2000 inputs within BASINS version 3.1 (Wells, 2006).

A SWAT interface compatible with ArcGIS version 9.1
(ArcSWAT) has recently been developed that uses a geodata‐
base approach and a programming structure consistent with
Component Object Model (COM) protocol (Olivera et al.,
2006; SWAT, 2007a). An ArcGIS 9.x version of AGWA
(AGWA2) is also being developed and is expected to be re‐
leased near mid‐2007 (USDA‐ARS, 2007).

A variety of other tools have been developed to support
executions of SWAT simulations, including: (1) the interac‐
tive SWAT (i_SWAT) software (CARD, 2007), which sup‐
ports SWAT simulations using a Windows interface with an
Access database; (2) the Conservation Reserve Program
(CRP) Decision Support System (CRP‐DSS) developed by
Rao et al. (2006); (3) the AUTORUN system used by Kannan
et al. (2007b), which facilitates repeated SWAT simulations
with variations in selected parameters; and (4) a generic in‐
terface (iSWAT) program (Abbaspour et al., 2007), which au‐
tomates parameter selection and aggregation for iterative
SWAT calibration simulations.

SWAT APPLICATIONS

Applications of SWAT have expanded worldwide over the
past decade. Many of the applications have been driven by
the needs of various government agencies, particularly in the
U.S. and the European Union, that require direct assessments
of anthropogenic, climate change, and other influences on a



1215Vol. 50(4): 1211-1250

Figure 2. Distribution of the 2,149 8‐digit watersheds within the 18 Major Water Resource Regions (MWRRs) that comprise the conterminous U.S.

wide range of water resources or exploratory assessments of
model capabilities for potential future applications.

One of the first major applications performed with SWAT
was within the Hydrologic Unit Model of the U.S. (HUMUS)
modeling system (Arnold et al., 1999a), which was imple‐
mented to support USDA analyses of the U.S. Resources
Conservation Act Assessment of 1997 for the conterminous
U.S. The system was used to simulate the hydrologic and/or
pollutant loss impacts of agricultural and municipal water
use, tillage and cropping system trends, and other scenarios
within each of the 2,149 U.S. Geological Survey (USGS)
8‐digit Hydrologic Cataloging Unit (HCU) watersheds
(Seaber et al., 1987), referred to hereafter as “8‐digit wa‐
tersheds”. Figure 2 shows the distribution of the 8‐digit wa‐
tersheds within the 18 Major Water Resource Regions
(MWRRs) that comprise the conterminous U.S.

SWAT is also being used to support the USDA Conserva‐
tion Effects Assessment Project, which is designed to quanti‐
fy the environmental benefits of conservation practices at
both the national and watershed scales (Mausbach and De‐
drick, 2004). SWAT is being applied at the national level
within a modified HUMUS framework to assess the benefits
of different conservation practices at that scale. The model is
also being used to evaluate conservation practices for wa‐
tersheds of varying sizes that are representative of different
regional conditions and mixes of conservation practices.

SWAT is increasingly being used to perform TMDL analy‐
ses, which must be performed for impaired waters by the dif‐
ferent states as mandated by the 1972 U.S. Clean Water Act
(USEPA, 2006b). Roughly 37% of the nearly 39,000 current‐
ly listed impaired waterways still require TMDLs (USEPA,
2007); SWAT, BASINS, and a variety of other modeling tools

will be used to help determine the pollutant sources and po‐
tential solutions for many of these forthcoming TMDLs. Ex‐
tensive discussion of applying SWAT and other models for
TMDLs is presented in Borah et al. (2006), Benham et al.
(2006), and Shirmohammadi et al. (2006).

SWAT has also been used extensively in Europe, including
projects supported by various European Commission (EC)
agencies. Several models including SWAT were used to
quantify the impacts of climate change for five different wa‐
tersheds in Europe within the Climate Hydrochemistry and
Economics of Surface‐water Systems (CHESS) project,
which was sponsored by the EC Environment and Climate
Research Programme (CHESS, 2001). A suite of nine models
including SWAT were tested in 17 different European wa‐
tersheds as part of the EUROHARP project, which was spon‐
sored by the EC Energy, Environment and Sustainable
Development (EESD) Programme (EUROHARP, 2006). The
goal of the research was to assess the ability of the models to
estimate nonpoint‐source nitrogen and phosphorus losses to
both freshwater streams and coastal waters. The EESD‐
sponsored TempQsim project focused on testing the ability of
SWAT and five other models to simulate intermittent stream
conditions that exist in southern Europe (TempQsim, 2006).
Volk et al. (2007) and van Griensven et al. (2006a) further de‐
scribe SWAT application approaches within in the context of
the European Union (EU) Water Framework Directive.

The following application discussion focuses on the wide
range of specific SWAT applications that have been reported
in the literature. Some descriptions of modified SWAT model
applications are interspersed within the descriptions of stud‐
ies that used the standard SWAT model.



1216 TRANSACTIONS OF THE ASABE

Table 1. Overview of major application categories
of SWAT studies reported in the literature.[a]

Primary Application Category
Hydrologic

Only

Hydrologic
and

Pollutant
Loss

Pollutant
Loss
Only

Calibration and/or sensitivity analysis 15 20 2
Climate change impacts 22 8 --
GIS interface descriptions 3 3 2
Hydrologic assessments 42 -- --
Variation in configuration or data input

effects
21 15 --

Comparisons with other models or
techniques

5 7 1

Interfaces with other models 13 15 6
Pollutant assessments -- 57 6
[a] Includes studies describing applications of ESWAT, SWAT-G, SWIM,

and other modified SWAT models.

SPECIFIC SWAT APPLICATIONS
SWAT applications reported in the literature can be cate‐

gorized in several ways. For this study, most of the peer‐
reviewed articles could be grouped into the nine
subcategories listed in table 1, and then further broadly de‐
fined as hydrologic only, hydrologic and pollutant loss, or
pollutant loss only. Reviews are not provided for all of the ar‐
ticles included in the table 1 summary; a complete list of the
SWAT peer‐reviewed articles is provided at the SWAT web
site (SWAT, 2007c), which is updated on an ongoing basis.

HYDROLOGIC ASSESSMENTS

Simulation of the hydrologic balance is foundational for
all SWAT watershed applications and is usually described in
some form regardless of the focus of the analysis. The major‐
ity of SWAT applications also report some type of graphical
and/or statistical hydrologic calibration, especially for
streamflow, and many of the studies also report validation re‐
sults. A wide range of statistics has been used to evaluate
SWAT hydrologic predictions. By far the most widely used
statistics reported for hydrologic calibration and validation
are the regression correlation coefficient (R2) and the Nash‐
Sutcliffe model efficiency (NSE) coefficient (Nash and Sut‐
cliffe, 1970). The R2 value measures how well the simulated
versus observed regression line approaches an ideal match
and ranges from 0 to 1, with a value of 0 indicating no correla‐
tion and a value of 1 representing that the predicted disper‐
sion equals the measured dispersion (Krause et al., 2005).
The regression slope and intercept also equal 1 and 0, respec‐
tively, for a perfect fit; the slope and intercept are often not
reported. The NSE ranges from −∞  to 1 and measures how
well the simulated versus observed data match the 1:1 line
(regression line with slope equal to 1). An NSE value of 1
again reflects a perfect fit between the simulated and mea‐
sured data. A value of 0 or less than 0 indicates that the mean
of the observed data is a better predictor than the model out‐
put. See Krause et al. (2005) for further discussion regarding
the R2, NSE, and other efficiency criteria measures.

An extensive list of R2 and NSE statistics is presented in
table 2 for 115 SWAT hydrologic calibration and/or validation
results reported in the literature. These statistics provides valu‐
able insight regarding the hydrologic performance of the model
across a wide spectrum of conditions. To date, no absolute crite‐
ria for judging model performance have been firmly established

in the literature. However, Moriasi et al. (2007) proposed that
NSE values should exceed 0.5 in order for model results to be
judged as satisfactory for hydrologic and pollutant loss evalua‐
tions performed on a monthly time step (and that appropriate re‐
laxing and tightening of the standard be performed for daily and
annual time step evaluations, respectively). Assuming this crite‐
rion for both the NSE and r2 values at all time steps, the majority
of statistics listed in table�2 would be judged as adequately repli‐
cating observed streamflows and other hydrologic indicators.
However, it is clear that poor results resulted for parts or all of
some studies. The poorest results generally occurred for daily
predictions, although this was not universal (e.g., Grizzetti et al.,
2005). Some of the weaker results can be attributed in part to
inadequate representation of rainfall inputs, due to either a lack
of adequate rain gauges in the simulated watershed or subwa‐
tershed configurations that were too coarse to capture the spatial
detail of rainfall inputs (e.g., Cao et al., 2006; Conan et al.,
2003b; Bouraoui et al., 2002; Bouraoui et al., 2005). Other fac‐
tors that may adversely affect SWAT hydrologic predictions in‐
clude a lack of model calibration (Bosch et al., 2004),
inaccuracies in measured streamflow data (Harmel et al., 2006),
and relatively short calibration and validation periods (Muleta
and Nicklow, 2005b).

Example Calibration/Validation Studies
The SWAT hydrologic subcomponents have been refined

and validated at a variety of scales (table 2). For example, Ar‐
nold and Allen (1996) used measured data from three Illinois
watersheds, ranging in size from 122 to 246 km2, to success‐
fully validate surface runoff, groundwater flow, groundwater
ET, ET in the soil profile, groundwater recharge, and ground‐
water height parameters. Santhi et al. (2001a, 2006) per‐
formed extensive streamflow validations for two Texas
watersheds that cover over 4,000 km2. Arnold et al. (1999b)
evaluated streamflow and sediment yield data in the Texas
Gulf basin with drainage areas ranging from 2,253 to
304,260�km2. Streamflow data from approximately 1,000
stream monitoring gauges from 1960 to 1989 were used to
calibrate and validate the model. Predicted average monthly
streamflows for three major river basins (20,593 to
108,788�km2) were 5% higher than measured flows, with
standard deviations between measured and predicted within
2%. Annual runoff and ET were validated across the entire
continental  U.S. as part of the Hydrologic Unit Model for the
U.S. (HUMUS) modeling system. Rosenthal et al. (1995)
linked GIS to SWAT and simulated ten years of monthly
streamflow without calibration. SWAT underestimated the
extreme events but produced overall accurate streamflows
(table 2). Bingner (1996) simulated runoff for ten years for a
watershed in northern Mississippi. The SWAT model pro‐
duced reasonable results in the simulation of runoff on a daily
and annual basis from multiple subbasins (table 2), with the
exception of a wooded subbasin. Rosenthal and Hoffman
(1999) successfully used SWAT and a spatial database to sim‐
ulate flows, sediment, and nutrient loadings on a 9,000 km2

watershed in central Texas to locate potential water quality
monitoring sites. SWAT was also successfully validated for
streamflow (table 2) for the Mill Creek watershed in Texas for
1965‐1968 and 1968‐1975 (Srinivasan et al., 1998). Monthly
streamflow rates were well predicted, but the model overesti‐
mated streamflows in a few years during the spring/summer
months. The overestimation may be accounted for by vari‐
able rainfall during those months.
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Van Liew and Garbrecht (2003) evaluated SWAT's ability
to predict streamflow under varying climatic conditions for
three nested subwatersheds in the 610 km2 Little Washita
River experimental watershed in southwestern Oklahoma.
They found that SWAT could adequately simulate runoff for
dry, average, and wet climatic conditions in one subwa‐
tershed, following calibration for relatively wet years in two
of the subwatersheds. Govender and Everson (2005) report
relatively strong streamflow simulation results (table 2) for
a small (0.68 km2) research watershed in South Africa. How‐
ever, they also found that SWAT performed better in drier
years than in a wet year, and that the model was unable to ade‐
quately simulate the growth of Mexican Weeping Pine due to
inaccurate accounting of observed increased ET rates in ma‐
ture plantations.

Qi and Grunwald (2005) point out that, in most studies,
SWAT has usually been calibrated and validated at the drain‐
age outlet of a watershed. In their study, they calibrated and
validated SWAT for four subwatersheds and at the drainage
outlet (table 2). They found that spatially distributed calibra‐
tion and validation accounted for hydrologic patterns in the

subwatersheds. Other studies that report the use of multiple
gauges to perform hydrologic calibration and validation with
SWAT include Cao et al. (2006), White and Chaubey (2005),
Vazquez‐Amábile  and Engel (2005), and Santhi et al.
(2001a).

Applications Accounting for Base Flow and/or for
Karst‐Influenced Systems

Arnold et al. (1995a) and Arnold and Allen (1999) de‐
scribe a digital filter technique that can be used for determin‐
ing separation of base and groundwater flow from overall
streamflow, which has been used to estimate base flow and/or
groundwater flow in several SWAT studies (e.g., Arnold et
al., 2000; Santhi et al., 2001a; Hao et al., 2004; Cheng et al.,
2006; Kalin and Hantush, 2006; Jha et al., 2007). Arnold et
al. (2000) found that SWAT groundwater recharge and dis‐
charge (base flow) estimates for specific 8‐digit watersheds
compared well with filtered estimates for the 491,700 km2

upper Mississippi River basin. Jha et al. (2007) report accu‐
rate estimates of streamflow (table 2) for the 9,400 km2 Rac‐
coon River watershed in west central Iowa, and that their
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predicted base flow was similar to both the filtered estimate
and a previous base flow estimate. Kalin and Hantush (2006)
report accurate surface runoff and streamflow results for the
120 km2 Pocono Creek watershed in eastern Pennsylvania
(table 2); their base flow estimates were weaker, but they
state those estimates were not a performance criteria. Base
flow and other flow components estimated with SWAT by
Srivastava et al. (2006) for the 47.6 km2 West Branch Bran‐
dywine Creek watershed in southwest Pennsylvania were
found to be generally poor (table 2). Peterson and Hamlett
(1998) also found that SWAT was not able to simulate base
flows for the 39.4 km2 Ariel Creek watershed in northeast
Pennsylvania, due to the presence of soil fragipans. Chu and
Shirmohammadi  (2004) found that SWAT was unable to sim‐
ulate an extremely wet year for a 3.46 km2 watershed in
Maryland. After removing the wet year, the surface runoff,
base flow, and streamflow results were within acceptable ac‐
curacy on a monthly basis. Subsurface flow results also im‐
proved when the base flow was corrected.

Spruill et al. (2000) calibrated and validated SWAT with
one year of data each for a small experimental watershed in
Kentucky. The 1995 and 1996 daily NSE values reflected
poor peak flow values and recession rates, but the monthly
flows were more accurate (table 2). Their analysis confirmed
the results of a dye trace study in a central Kentucky karst wa‐
tershed, indicating that a much larger area contributed to
streamflow than was described by topographic boundaries.
Coffey et al. (2004) report similar statistical results for the
same Kentucky watershed (table 2). Benham et al. (2006) re‐
port that SWAT streamflow results (table 2) did not meet cal‐
ibration criteria for the karst‐influenced 367 km2 Shoal Creek
watershed in southwest Missouri, but that visual inspection
of the simulated and observed hydrographs indicated that the
system was satisfactorily modeled. They suggest that SWAT
was not able to capture the conditions of a very dry year in
combination with flows sustained by the karst features.

Afinowicz et al. (2005) modified SWAT in order to more
realistically  simulate rapid subsurface water movement
through karst terrain in the 360 km2 Guadalupe River wa‐
tershed in southwest Texas. They report that simulated base
flows matched measured streamflows after the modification,
and that the predicted daily and monthly and daily results
(table 2) fell within the range of published model efficiencies
for similar systems. Eckhardt et al. (2002) also found that
their modifications for SWAT‐G resulted in greatly improved
simulation of subsurface interflow in German low mountain
conditions (table 2).

Soil Water, Recharge, Tile Flow, and Related Studies
Mapfumo et al. (2004) tested the model's ability to simu‐

late soil water patterns in small watersheds under three graz‐
ing intensities in Alberta, Canada. They observed that SWAT
had a tendency to overpredict soil water in dry soil conditions
and to underpredict in wet soil conditions. Overall, the model
was adequate in simulating soil water patterns for all three
watersheds with a daily time step. SWAT was used by Delib‐
erty and Legates (2003) to document 30‐year (1962‐1991)
long‐term average soil moisture conditions and variability,
and topsoil variability, for Oklahoma. The model was judged
to be able to accurately estimate the relative magnitude and
variability of soil moisture in the study region. Soil moisture
was simulated with SWAT by Narasimhan et al. (2005) for six
large river basins in Texas at a spatial resolution of 16 km2

and a temporal resolution of one week. The simulated soil
moisture was evaluated on the basis of vegetation response,
by using 16 years of normalized difference vegetation index
(NDVI) data derived from NOAA‐AVHRR satellite data.
The predicted soil moistures were well correlated with agri‐
culture and pasture NDVI values. Narasimhan and Sriniva‐
san (2005) describe further applications of a soil moisture
deficit index and an evapotranspiration deficit index.

Arnold et al. (2005) validated a crack flow model for
SWAT, which simulates soil moisture conditions with depth
to account for flow conditions in dry weather. Simulated
crack volumes were in agreement with seasonal trends, and
the predicted daily surface runoff levels also were consistent
with measured runoff data (table 2). Sun and Cornish (2005)
simulated 30 years of bore data for a 437 km2 watershed.
They used SWAT to estimate recharge in the headwaters of
the Liverpool Plains in New South Wales, Australia. These
authors determined that SWAT could estimate recharge and
incorporate land use and land management at the watershed
scale. A code modification was performed by Vazquez‐
Amábile and Engel (2005) that allowed reporting of soil
moisture for each soil layer. The soil moisture values were
then converted into groundwater table levels based on the ap‐
proach used in DRAINMOD (Skaggs, 1982). It was con‐
cluded that predictions of groundwater table levels would be
useful to include in SWAT.

Modifications were performed by Du et al. (2006) to
SWAT2000 to improve the original SWAT tile drainage func‐
tion. The modified model was referred to as SWAT‐M and re‐
sulted in clearly improved tile drainage and streamflow
predictions for the relatively flat and intensively cropped
51.3 km2 Walnut Creek watershed in central Iowa (table 2).
Green et al. (2006) report a further application of the revised
tile drainage routine using SWAT2005 for a large tile‐drained
watershed in north central Iowa, which resulted in a greatly
improved estimate of the overall water balance for the wa‐
tershed (table 2). This study also presented the importance of
ensuring that representative runoff events are present in both
the calibration and validation in order to improve the model's
effectiveness.

Snowmelt‐Related Applications
Fontaine et al. (2002) modified the original SWAT snow

accumulation  and snowmelt routines by incorporating im‐
proved accounting of snowpack temperature and accumula‐
tion, snowmelt, and areal snow coverage, and an option to
input precipitation and temperature as a function of elevation
bands. These enhancements resulted in greatly improved
streamflow estimates for the mountainous 5,000 km2 upper
Wind River basin in Wyoming (table 2). Abbaspour et al.
(2007) calibrated several snow‐related parameters and used
four elevation bands in their SWAT simulation of the
1,700�km2 Thur watershed in Switzerland that is character‐
ized by a pre‐alpine/alpine climate. They report excellent
SWAT discharge estimates.

Other studies have reported mixed SWAT snowmelt simu‐
lation results, including three that reported poor results for
watersheds (0.395 to 47.6 km2) in eastern Pennsylvania. Pet‐
erson and Hamlett (1998) found that SWAT was unable to ac‐
count for unusually large snowmelt events, and Srinivasan et
al. (2005) found that SWAT underpredicted winter stream‐
flows; both studies used SWAT versions that predated the
modifications performed by Fontaine et al. (2002). Srivasta‐
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va et al. (2006) also found that SWAT did not adequately pre‐
dict winter flows. Qi and Grunwald found that SWAT did not
predict winter season precipitation‐runoff events well for the
3,240 km2 Sandusky River watershed. Chanasyk et al. (2003)
found that SWAT was not able to replicate snowmelt‐
dominated runoff (table 2) for three small grassland wa‐
tersheds in Alberta that were managed with different grazing
intensities.  Wang and Melesse (2005) report that SWAT accu‐
rately simulated the monthly and annual (and seasonal) dis‐
charges for the Wild Rice River watershed in Minnesota, in
addition to the spring daily streamflows, which were predom‐
inantly from melted snow. Accurate snowmelt‐dominated
streamflow predictions were also found by Wang and Me‐
lesse (2006) for the Elm River in North Dakota. Wu and John‐
ston (2007) found that the snow melt parameters used in
SWAT are altered by drought conditions and that streamflow
predictions for the 901 km2 South Branch Ontonagon River
in Michigan improved when calibration was based on a
drought period (versus average climatic conditions), which
more accurately reflected the drought conditions that charac‐
terized the validation period. Statistical results for all these
studies are listed in table 2.

Benaman et al. (2005) found that SWAT2000 reasonably
replicated streamflows for the 1,200 km2 Cannonsville Res‐
ervoir watershed in New York (table 2), but that the model un‐
derestimated snowmelt‐driven winter and spring stream-
flows. Improved simulation of cumulative winter stream‐
flows and spring base flows were obtained by Tolston and
Shoemaker (2007) for the same watershed (table 2) by modi‐
fying SWAT2000 so that lateral subsurface flow could occur
in frozen soils. Francos et al. (2001) also modified SWAT to
obtain improved streamflow results for the Kerava River wa‐
tershed in Finland (table 2) by using a different snowmelt
submodel that was based on degree‐days and that could ac‐
count for variations in land use by subwatershed. Incorporat‐
ing modifications such as those described in these two studies
may improve the accuracy of snowmelt‐related processes in
future SWAT versions.

Irrigation and Brush Removal Scenarios
Gosain et al. (2005) assessed SWAT's ability to simulate

return flow after the introduction of canal irrigation in a basin
in Andra Pradesh, India. SWAT provided the assistance water
managers needed in planning and managing their water re‐
sources under various scenarios. Santhi et al. (2005) describe
a new canal irrigation routine that was used in SWAT. Cumu‐
lative irrigation withdrawal was estimated for each district
for each of three different conservation scenarios (relative to
a reference scenario). The percentage of water that was saved
was also calculated. SWAT was used by Afinowicz et al.
(2005) to evaluate the influence of woody plants on water
budgets of semi‐arid rangeland in southwest Texas. Baseline
brush cover and four brush removal scenarios were evaluat‐
ed. Removal of heavy brush resulted in the greatest changes
in ET (approx. 32 mm year-1 over the entire basin), surface
runoff, base flow, and deep recharge. Lemberg et al. (2002)
also describe brush removal scenarios.

Applications Incorporating Wetlands, Reservoirs, and
Other Impoundments

Arnold et al. (2001) simulated a wetland with SWAT that
was proposed to be sited next to Walker Creek in the Fort
Worth, Texas, area. They found that the wetland needed to be
above 85% capacity for 60% of a 14‐year simulation period,

in order to continuously function over the entire study period.
Conan et al. (2003b) found that SWAT adequately simulated
conversion of wetlands to dry land for the upper Guadiana
River basin in Spain but was unable to represent all of the dis‐
charge details impacted by land use alterations. Wu and John‐
ston (2007) accounted for wetlands and lakes in their SWAT
simulation of a Michigan watershed, which covered over
23% of the watershed. The impact of flood‐retarding struc‐
tures on streamflow for dry, average, and wet climatic condi‐
tions in Oklahoma was investigated with SWAT by Van Liew
et al. (2003b). The flood‐retarding structures were found to
reduce average annual streamflow by about 3% and to effec‐
tively reduce annual daily peak runoff events. Reductions of
low streamflows were also predicted, especially during dry
conditions. Mishra et al. (2007) report that SWAT accurately
accounted for the impact of three checkdams on both daily
and monthly streamflows for the 17 km2 Banha watershed in
northeast India (table 2). Hotchkiss et al. (2000) modified
SWAT based on U.S. Army Corp of Engineers reservoir rules
for major Missouri River reservoirs, which resulted in greatly
improved simulation of reservoir dynamics over a 25‐year
period. Kang et al. (2006) incorporated a modified impound‐
ment routine into SWAT, which allowed more accurate simu‐
lation of the impacts of rice paddy fields within a South
Korean watershed (table 2).

Green‐Ampt Applications
Very few SWAT applications in the literature report the use

of the Green‐Ampt infiltration option. Di Luzio and Arnold
(2004) report sub‐hourly results for two different calibration
methods using the Green‐Ampt method (table 2). King et al.
(1999) found that the Green‐Ampt option did not provide any
significant advantage as compared to the curve number ap‐
proach for uncalibrated SWAT simulations for the 21.3 km2

Goodwin Creek watershed in Mississippi (table 2). Kannan
et al. (2007b) report that SWAT streamflow results were more
accurate using the curve number approach as compared to the
Green‐Ampt method for a small watershed in the U.K.
(table�2).  However, they point out that several assumptions
were not optimal for the Green‐Ampt approach.

POLLUTANT LOSS STUDIES

Nearly 50% of the reviewed SWAT studies (table 1) report
simulation results of one or more pollutant loss indicator.
Many of these studies describe some form of verifying pollu‐
tant prediction accuracy, although the extent of such report‐
ing is less than what has been published for hydrologic
assessments. Table 3 lists R2 and NSE statistics for 37 SWAT
pollutant loss studies, which again are used here as key indi‐
cators of model performance. The majority of the R2 and NSE
values reported in table 3 exceed 0.5, indicating that the mod‐
el was able to replicate a wide range of observed in‐stream
pollutant levels. However, poor results were again reported
for some studies, especially for daily comparisons. Similar to
the points raised for the hydrologic results, some of the weak‐
er results were due in part to inadequate characterization of
input data (Bouraoui et al., 2002), uncalibrated simulations
of pollutant movement (Bärlund et al., 2007), and uncertain‐
ties in observed pollutant levels (Harmel et al., 2006).

Sediment Studies
Several studies showed the robustness of SWAT in predict‐

ing sediment loads at different watershed scales. Saleh et al.
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Table 3. Summary of reported SWAT environmental indicator calibration and validation
coefficient of determination (R2) and Nash‐Sutcliffe model efficiency (NSE) statistics.

Reference Watershed

Drainage
Area

(km2)[a] Indicator[b]

Time Period
(C = calib.,
V = valid.)

Calibration Validation
Daily Monthly Annual Daily Monthly Annual

R2 NSE R2 NSE R2 NSE R2 NSE R2 NSE R2 NSE

Arabi et al.
(2006b)[c]

Dreisbach and
Smith Fry
(Indiana)

6.2
and
7.3

Suspended
solids

C: 1974-1975
V: 1976 to
May 1977

0.97
and
0.94

0.92
and
0.86

0.86
and
0.85

0.75
and
0.68

Total P 0.93
and
0.64

0.78
and
0.51

0.90
and
0.73

0.79
and
0.37

Total N 0.76
and
0.61

0.54
and
0.50

0.75
and
0.52

0.85
and
0.72

Bärlund et al.
(2007)[d],[e]

Lake Pyhäjärvi
(Finland)

-- Sediment 1990-1994 0.01

Behera and
Panda
(2006)

Kapgari (India) 9.73 Sediment C: 2002
V: 2003

(rainy season)

0.93 0.84 0.89 0.86

Nitrate 0.93 0.92 0.87 0.83

Total P 0.92 0.83 0.94 0.89

Bouraoui et al.
(2002)

Ouse River
(Yorkshire, U.K.)

3,500 Nitrate 1986-1990 0.64

Ortho P 0.02

Bouraoui et al.
(2004)

Vantaanjoki
(Finland);

subwatershed

295 Susp. solids 1982-1984 0.49

Total N 0.61

Total P 0.74

Entire
watershed

1,682 Nitrate 1974-1998 0.34

Total P 0.62

Bracmort et al.
(2006)[c]

Dreisbach and
Smith Fry
(Indiana)

6.2
and
7.3

Mineral P C: 1974-1975
V: 1976 to
May 1977

0.92
and
0.90

0.84
and
0.78

0.86
and
0.73

0.74
and
0.51

Cerucci and
Conrad

(2003)[f]

Townbrook
(New York)

36.8 Sediment Oct. 1999-
Sept. 2000

0.70

Dissolved P 0.91

Particulate P 0.40

Chaplot et al.
(2004)

Walnut Creek 51.3 Nitrate 1991-1998 0.56

Cheng et al.
(2006)

Heihe River
(China)

7,241 Sediment C: 1992-1997
V: 1998-1999

0.70 0.74 0.78 0.76

Ammonia C: 1992-1997
V: 1998-1999

0.75 0.76 0.74 0.72

Chu et al.
(2004)[g]

Warner Creek 3.46 Sediment Varying
periods

0.10 0.05 0.19 0.11 0.91 0.90

Nitrate 0.27 0.16 0.38 0.36 0.96 0.90

Ammonium 0.38 -0.05 0.80 0.19

Total
Kjeldahl N

0.40 0.15 0.66 -0.56

Soluble P 0.39 -0.08 0.65 0.64 0.87 0.80

Total P 0.38 0.08 0.83 0.19

Cotter et al.
(2003)

Moores Creek
(Arkansas)

18.9 Sediment 1997-1998 0.48

Nitrate 0.44

Total P 0.66

Di Luzio et al.
(2002)

Upper North
Bosque River

(Texas)

932.5 Sediment Jan. 1993 to
July 1998

0.78

Organic N 0.60

Nitrate 0.60

Organic P 0.70

Ortho P 0.58
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Table 3 (cont'd). Summary of reported SWAT environmental indicator calibration and validation
coefficient of determination (R2) and Nash‐Sutcliffe model efficiency (NSE) statistics.

Reference Watershed

Drainage
Area

(km2)[a] Indicator[b]

Time Period
(C = calib.,
V = valid.)

Calibration Validation

Daily Monthly Annual Daily Monthly Annual

R2 NSE R2 NSE R2 NSE R2 NSE R2 NSE R2 NSE

Du et al.
(2006)[d],[h],[i]

Walnut Creek (Iowa);
subwatershed
(site 310) and

watershed outlet

51.3 Nitrate
(stream
flow)

C: 1992-1995
V: 1996-2001
(SWAT2000)

-0.37
and

-0.41

-0.21
and

-0.26

-0.14
and

-0.18

-0.21
and

-0.22

Subwatershed
(site 210)

-- Nitrate
(tile flow)

(SWAT2000) -0.60 -0.08 -0.16 -0.31

Subwatershed
(site 310) and

watershed outlet

51.3 Nitrate
(stream
flow)

(SWAT-M)[j] 0.61
and
0.53

0.91
and
0.85

0.41
and
0.26

0.80
and
0.67

Subwatershed
(site 210)

-- Nitrate
(tile flow)

(SWAT-M) 0.25 0.73 0.42 0.71

Subwatershed
(site 310) and

watershed outlet

51.3 Atrazine
(stream
flow)

(SWAT2000) -0.05
and

-0.12

-0.01
and

-0.02

-0.02
and

-0.39

-0.04
and
0.06

Subwatershed
(site 210)

-- Atrazine
(tile flow)

(SWAT2000) -0.47 -0.04 -0.46 -0.06

Subwatershed
(site 310) and

watershed outlet

51.3 Atrazine
(stream
flow)

(SWAT-M) 0.21
and
0.47

0.50
and
0.73

0.12
and

-0.41

0.53
and
0.58

Subwatershed
(site 210)

-- Atrazine
(tile flow)

(SWAT-M) 0.51 0.92 0.09 0.31

Gikas et al.
(2005)[d],[k]

Vistonis Lagoon
(Greece);

nine gauges

1,349 Sediment C: May 1998
to June 1999
V: Nov. 1999
to Jan. 2000

0.40
to

0.98

0.34
to

0.98

Nitrate 0.51
to

0.87

0.57
to

0.89

Total P 0.50
to

0.82

0.43
to

0.97

Grizzetti et al.
(2005)[d]

Parts of four
watersheds (U.K.);

C: one gauge,
V: two gauges,

annual: 50 gauges

1,380
to

8,900

Nitrate
and

nitrite

1995-1999 0.24 0.32 0.004
and
0.28

-0.66
and
0.38

0.68

Grizzetti et al.
(2003)

Vantaanjoki
(Finland);

three gauges

295
to

1,682

Total N Varying
periods

0.59 0.43
and
0.51

0.10
and
0.30

Total P 0.74 0.54
and
0.44

0.63
and
0.64

Grunwald
and Qi
(2006)

Sandusky (Ohio);
three gauges

90.3
to

3,240

Suspended
sediment

C: 1998-1999
V: 2000-2001

-5.1
to
0.2

-1.0
to

0.02

Total P -0.89
to

0.07

0.08
to

0.45

Nitrite -4.6
to

0.19

-0.16
to

0.48

Nitrate -0.12
to

0.29

-0.1
to

0.57

Ammonia -0.44
to

-0.24

-0.44
to

-0.21
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Table 3 (cont'd). Summary of reported SWAT environmental indicator calibration and validation
coefficient of determination (R2) and Nash‐Sutcliffe model efficiency (NSE) statistics.

Reference Watershed

Drainage
Area

(km2)[a] Indicator[b]

Time Period
(C = calib.,
V = valid.)

Calibration Validation
Daily Monthly Annual Daily Monthly Annual

R2 NSE R2 NSE R2 NSE R2 NSE R2 NSE R2 NSE

Hanratty and
Stefan
(1998)

Cottonwood
(Minnesota)

3,400 Suspended
sediment

1967-1991 0.59

Nitrate
and nitrite

0.68

Total P 0.54

Organic N
and

ammonia

0.57

Hao et al.
(2004)

Lushi (China) 4,623 Sediment C: 1992-1997
V: 1998-1999

0.72 0.72 0.98 0.94

Jha et al.
(2007)[l]

Raccoon River
(Iowa)

8,930 Sediment C: 1981-1992
V: 1993-2003

0.55 0.53 0.97 0.93 0.80 0.78 0.89 0.79

Nitrate 0.76 0.73 0.83 0.78 0.79 0.78 0.91 0.84

Kang et al.
(2006)[k]

Baran
(South Korea)

29.8 Suspended
solids

C: 1996-1997
V: 1999-2000

0.77 0.70 0.89 0.89

Total N 0.84 0.73 0.85 0.65

Total P 0.81 0.42 0.85 0.19

Kaur et al.
(2004)

Nagwan (India) 9.58 Sediment C: 1984
and 1992

V: 1981-1983,
1985-1989,

and 1991

0.54 -0.67 0.65 0.70

Kirsch et al.
(2002)

Rock River
(Wisconsin);

Windsor gauge

190 Sediment 1991-1995 0.82 0.75

Total P 0.95 0.07

Mishra et al.
(2007)

Banha (India) 17 Sediment C: 1996
V: 1997-2001

0.82 0.82 0.99 0.98 0.77 0.58 0.89 0.63

Muleta and
Nicklow
(2005a)

Big Creek
(Illinois)

86.5 Sediment 1999-2001 0.42

Muleta and
Nicklow
(2005b)

Big Creek
(Illinois);

separate gauges
for C and V

23.9
and
86.5

Sediment C: June 1999
to Aug. 2001
V: Apr. 2000
to Aug. 2001

0.46 -0.005

Nasr et al.
(2007)[c]

Clarianna, Dripsey,
and Oona Water

(Ireland)

15
to
96

Total P Varying
periods

0.44
to

0.59

Plus et al.
(2006)[d],[m]

Thau Lagoon
(France);

two gauges

280 Nitrate 1993-1999 0.44
and
0.27

Ammonia 0.31
and
0.15

Organic N 0.66
and
0.20

Saleh et al.
(2000)[n]

Upper North
Bosque River

(Texas);
C: one gauge,
V: 11 gauges

932.5 Sediment Oct. 1993 to
Aug. 1995

0.81 0.94

Nitrate 0.27 0.65

Organic N 0.78 0.82

Total N 0.86 0.97

Ortho P 0.94 0.92

Particulate
P

0.54 0.89

Total P 0.83 0.93
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Table 3 (cont'd). Summary of reported SWAT environmental indicator calibration and validation
coefficient of determination (R2) and Nash‐Sutcliffe model efficiency (NSE) statistics.

Reference Watershed

Drainage
Area

(km2)[a] Indicator[b]

Time Period
(C = calib.,
V = valid.)

Calibration Validation
Daily Monthly Annual Daily Monthly Annual

R2 NSE R2 NSE R2 NSE R2 NSE R2 NSE R2 NSE

Saleh and Du
(2004)

Upper North
Bosque River

(Texas)

932.5 Total
suspended

solids

C: Jan. 1994
to June 1995
V: July 1995
to July 1999

-2.5 0.83 -3.5 0.59

Nitrate
and nitrite

0.04 0.29 0.50 0.50

Organic N -0.07 0.87 0.69 0.77

Total N 0.01 0.81 0.68 0.75

Ortho P 0.08 0.76 0.45 0.40

Particulate
P

-0.74 0.59 0.59 0.73

Total P -0.08 0.77 0.63 0.71

Santhi et al.
(2001a)[d],[o]

Bosque River
(Texas);

two gauges

4,277 Sediment C: 1993-1997
V: 1998

0.81
and
0.87

0.80
and
0.69

0.98
and
0.95

0.70
and
0.23

Mineral N 0.64
and
0.72

0.59
and

-0.08

0.89
and
0.72

0.75
and
0.64

Organic N 0.61
and
0.60

0.58
and
0.57

0.92
and
0.71

0.73
and
0.43

Mineral P 0.60
and
0.66

0.59
and
0.53

0.83
and
0.93

0.53
and
0.81

Organic P 0.71
and
0.61

0.70
and
0.59

0.95
and
0.80

0.72
and
0.39

Stewart et al.
(2006)

Upper North
Bosque River

(Texas)

932.5 Sediment C: 1994-1999
V: 2001-2002

0.94 0.80 0.82 0.63

Mineral N 0.80 0.60 0.57 -0.04

Organic N 0.87 0.71 0.89 0.73

Mineral P 0.88 0.75 0.82 0.37

Organic P 0.85 0.69 0.89 0.58

Tolson and
Shoemaker

(2007)[d],[j],[p]

Cannonsville
(New York)

37
to

913[q]

Total
suspended

solids

Varying
periods

0.70
(0.47)

0.67
(0.24)

0.42
and
0.83

0.33
and
0.83

0.72
and
0.83

0.52
and
0.76

Total
dissolved

P

0.79
(0.84)

0.78
(0.84)

0.62
and
0.71

0.61
and
-5.3

0.93
and
0.89

0.89
and
-6.5

Particulate
P

0.67
(0.50)

0.61
(0.26)

0.37
and
0.85

0.32
and
0.85

0.63
and
0.88

0.48
and
0.79

Total P 0.73
(0.58)

0.78
(0.37)

0.43
and
0.87

0.40
and
0.78

0.75
and
0.92

0.63
and
0.92

Tripathi et al.
(2003)

Nagwan (India) 92.5 Sediment June-Oct. 1997 0.89 0.89 0.89 0.79

Nitrate 0.89

Organic N 0.82

Soluble P 0.82

Organic P 0.86

Vazquez-
Amabile et al.

(2006)[i]

St. Joseph River
(Indiana, Michigan,

and Ohio);
ten sampling sites

628.2
to

1620

Atrazine 1996-1999 0.14 0.42

Main outlet at
Fort Wayne, Indiana

2,620 Atrazine 2000-2004 0.27 -0.31 0.59 0.28
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Table 3 (cont'd). Summary of reported SWAT environmental indicator calibration and validation
coefficient of determination (R2) and Nash‐Sutcliffe model efficiency (NSE) statistics.

Reference Watershed

Drainage
Area

(km2)[a] Indicator[b]

Time Period
(C = calib.,
V = valid.)

Calibration Validation
Daily Monthly Annual Daily Monthly Annual

R2 NSE R2 NSE R2 NSE R2 NSE R2 NSE R2 NSE

Veith et al.
(2005)

Watershed FD-36
(Pennsylvania)

0.395 Sediment 1997-2000 0.04 -0.75

White and
Chaubey

(2005)[r],[s]

Beaver Reservoir
(Arkansas);
three gauges

362
to

1,020

Sediment C: 2000
or 2001
V: 2001
or 2002

0.45
to

0.85

0.23
to

0.76

0.69
to

0.82

0.32
to

0.85

Nitrate
and

nitrite

0.01
to

0.84

-2.36
to

0.29

0.59
and
0.71

0.13
and
0.49

Total P 0.50
to

0.82

0.40
to

0.67

0.58
and
0.76

-0.29
and
0.67

[a] Based on drainage areas to the gauge(s)/sampling site(s) rather than total watershed area where reported (see footnote [d] for further information).
[b] The reported indicators are listed here as reported in each respective study; the standard SWAT variables for relevant in-stream constituents are: sediment,

organic nitrogen (N), organic phosphorus (P), nitrate (NO3-N), ammonium (NH4-N), nitrite (NO2-N), and mineral P (Neitsch et al., 2005b).
[c] Arabi et al. (2006b) and Bracmort et al. (2006) reported the same set of r2 and NSE statistics for sediment and total P; the calibration time periods were

reported by Arabi et al. (2006b), and the validation time periods were inferred from graphical results reported by Bracmort et al. (2006).
[d] Explicit or estimated drainage areas were not reported for some or all of the gauge sites; the total watershed area is listed for those studies that reported it.
[e] The exact time scale of comparison was not explicitly stated and thus was inferred from other information provided.
[f] The statistics reported for sediment and organic P excluded the months of February and March 2000; large underestimations of both constituents occurred

in those two months.
[g] The nutrient statistics were based on adjusted flows that accounted for subsurface flows that originated from outside the watershed as reported by Chu and

Shirmohammadi (2004); the annual sediment, nitrate, and soluble P statistics were based on the combined calibration and validation periods.
[h] The daily and monthly statistics were based only on the days that sampling occurred.
[i] Other statistics were reported for different time periods, conditions, gauge combinations, and/or variations in selected in input data.
[j] A modified SWAT model was used.
[k] The exact time scale of comparison was not explicitly stated and thus was inferred from other information provided.
[l] A similar set of Raccoon River watershed statistics were reported for slightly different time periods by Secchi et al. (2007).
[m] Specific calibration and/or validation time periods were reported, but the statistics were based on the overall simulated time period (calibration plus

validation time periods).
[n] The APEX model (Williams and Izaurralde, 2006) was interfaced with SWAT for this study. The calibration statistics were based on a comparison between

simulated and measured flows at the watershed outlet, while the validation statistics were based on a comparison between simulated and measured flows
averaged across 11 different gauges.

[o] The calibration and validation statistics were also reported by Santhi et al. (2001b).
[p] The calibration statistics in parentheses include January 1996; an unusually large runoff and erosion event occurred during that month.
[q] As reported by Benamen et al. (2005).
[r] These statistics were computed on the basis of comparisons between simulated and measured data within specific years, rather than across multiple years.
[s] The statistics for the War Eagle Creek subwatershed gauge were also reported by Migliaccio et al. (2007).

(2000) conducted a comprehensive SWAT evaluation for the
932.5 km2 upper North Bosque River watershed in north cen‐
tral Texas, and found that predicted monthly sediment losses
matched measured data well but that SWAT daily output was
poor (table 3). Srinivasan et al (1998) concluded that SWAT
sediment accumulation predictions were satisfactory for the
279 km2 Mill Creek watershed, again located in north central
Texas. Santhi et al. (2001a) found that SWAT‐simulated sedi‐
ment loads matched measured sediment loads well (table 3)
for two Bosque River (4,277 km2) subwatersheds, except in
March. Arnold et al. (1999b) used SWAT to simulate average
annual sediment loads for five major Texas river basins
(20,593 to 569,000 km2) and concluded that the SWAT‐
predicted sediment yields compared reasonably well with es‐
timated sediment yields obtained from rating curves.

Besides Texas, the SWAT sediment yield component has
also been tested in several Midwest and northeast U.S. states.
Chu et al. (2004) evaluated SWAT sediment prediction for the
Warner Creek watershed located in the Piedmont physio‐
graphic region of Maryland. Evaluation results indicated
strong agreement between yearly measured and SWAT‐
simulated sediment load, but simulation of monthly sediment
loading was poor (table 3). Tolston and Shoemaker (2007)
modified the SWAT2000 sediment yield equation to account

for both the effects of snow cover and snow runoff depth (the
latter is not accounted for in the standard SWAT model) to
overcome snowmelt‐induced prediction problems identified
by Benaman et al. (2005) for the Cannonsville Reservoir wa‐
tershed in New York. They also reported improved sediment
loss predictions (table 3). Jha et al. (2007) found that the sedi‐
ment loads predicted by SWAT were consistent with sedi‐
ment loads measured for the Raccoon River watershed in
Iowa (table 3). Arabi et al. (2006b) report satisfactory SWAT
sediment simulation results for two small watersheds in Indi‐
ana (table 3). White and Chaubey (2005) report that SWAT
sediment predictions for the Beaver Reservoir watershed in
northeast Arkansas (table 3) were satisfactory. Sediment re‐
sults are also reported by Cotter et al. (2003) for another Ar‐
kansas watershed (table 3). Hanratty and Stefan (1998)
calibrated SWAT using water quality and quantity data mea‐
sured in the Cottonwood River in Minnesota (table�3). In
Wisconsin, Kirsch et al. (2002) calibrated SWAT annual pre‐
dictions for two subwatersheds located in the Rock River ba‐
sin (table 3), which lies within the glaciated portion of south
central and eastern Wisconsin. Muleta and Nicklow (2005a)
calibrated daily SWAT sediment yield with observed sedi‐
ment yield data from the Big Creek watershed in southern Il‐
linois and concluded that sediment fit seems reasonable
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(table 3). However, validation was not conducted due to lack
of data.

SWAT sediment simulations have also been evaluated in
Asia, Europe, and North Africa. Behera and Panda (2006)
concluded that SWAT simulated sediment yield satisfactorily
throughout the entire rainy season based on comparisons with
daily observed data (table 3) for an agricultural watershed lo‐
cated in eastern India. Kaur et al. (2004) concluded that
SWAT predicted annual sediment yields reasonably well for
a test watershed (table 3) in Damodar‐Barakar, India, the sec‐
ond most seriously eroded area in the world. Tripathi et al.
(2003) found that SWAT sediment predictions agreed closely
with observed daily sediment yield for the same watershed
(table 3). Mishra et al. (2007) found that SWAT accurately
replicated the effects of three checkdams on sediment trans‐
port (table 3) within the Banha watershed in northeast India.
Hao et al. (2004) state that SWAT was the first physically
based watershed model validated in China's Yellow River ba‐
sin. They found that the predicted sediment loading accurate‐
ly matched loads measured for the 4,623 km2 Lushi
subwatershed (table 3). Cheng et al. (2006) successfully
tested SWAT (table 3) using sediment data collected from the
7,241 km2 Heihe River, another tributary of the Yellow River.
In Finland, Bärlund et al. (2007) report poor results for uncal‐
ibrated simulations performed within the Lake Pyhäjärvi wa‐
tershed (table 3). Gikas et al. (2005) conducted an extensive
evaluation of SWAT for the Vistonis Lagoon watershed, a
mountainous agricultural watershed in northern Greece, and
concluded that agreement between observed and SWAT‐
predicted sediment loads were acceptable (table 3). Bouraoui
et al. (2005) evaluated SWAT for the Medjerda River basin
in northern Tunisia and reported that the predicted concentra‐
tions of suspended sediments were within an order of magni‐
tude of corresponding measured values.

Nitrogen and Phosphorus Studies
Several published studies from the U.S. showed the ro‐

bustness of SWAT in predicting nutrient losses. Saleh et al.
(2000), Saleh and Du (2004), Santhi et al. (2001a), Stewart
et al. (2006), and Di Luzio et al. (2002) evaluated SWAT by
comparing SWAT nitrogen prediction with measured nitro‐
gen losses in the upper North Bosque River or Bosque River
watersheds in Texas. They all concluded that SWAT reason‐
ably predicted nitrogen loss, with most of the average month‐
ly validation NSE values greater than or equal to 0.60
(table�3).  Phosphorus losses were also satisfactorily simu‐
lated with SWAT in these four studies, with validation NSE
values ranging from 0.39 to 0.93 (table 3). Chu et al. (2004)
applied SWAT to the Warner Creek watershed in Maryland
and reported satisfactory annual but poor monthly nitrogen
and phosphorus predictions (table 3). Hanratty and Stefan
(1998) calibrated SWAT nitrogen predictions using measured
data collected for the Cottonwood River, Minnesota, and
concluded that if properly calibrated, SWAT is an appropriate
model to use for simulating the effect of climate change on
water quality; they also reported satisfactory SWAT phospho‐
rus results (table 3).

In Iowa, Chaplot et al. (2004) calibrated SWAT using nine
years of data for the Walnut Creek watershed and concluded
that SWAT gave accurate predictions of nitrate load (table 3).
Du et al. (2006) showed that the modified tile drainage func‐
tions in SWAT‐M resulted in far superior nitrate loss predic‐
tions for Walnut Creek (table 3), as compared to the previous

approach used in SWAT2000. However, Jha et al. (2007) re‐
port accurate nitrate loss predictions (table 3) for the Raccoon
River watershed in Iowa using SWAT2000. In Arkansas, Cot‐
ter et al. (2003) calibrated SWAT with measured nitrate data
for the Moores Creek watershed and reported an NSE of 0.44.
They state that SWAT's response was similar to that of other
published reports.

Bracmort et al. (2006) and Arabi et al. (2006b) found that
SWAT could account for the effects of best management
practices (BMPs) on phosphorus and nitrogen losses for two
small watersheds in Indiana, with monthly validation NSE
statistics ranging from 0.37 to 0.79 (table 3). SWAT tended
to underpredict both mineral and total phosphorus yields for
the months with high measured phosphorus losses, but over‐
predicted the phosphorus yields for months with low mea-
sured losses. Cerucci and Conrad (2003) calibrated SWAT
soluble phosphorus predictions using measured data ob‐
tained for the Townbrook watershed in New York. They re‐
ported monthly NSE values of 0.91 and 0.40, if the measured
data from February and March were excluded. Kirsch et al.
(2002) reported that SWAT phosphorus loads were consider‐
ably higher than corresponding measured loads for the Rock
River watershed Wisconsin. Veith et al. (2005) found that
SWAT‐predicted losses were similar in magnitude to mea‐
sured watershed exports of dissolved and total phosphorus
during a 7‐month sampling period from a Pennsylvania wa‐
tershed.

SWAT nutrient predictions have also been evaluated in
several other countries. In India, SWAT N and P predictions
were tested using measured data within the Midnapore (Beh‐
era and Panda, 2006) and Hazaribagh (Tripathi et al., 2003)
districts of eastern India (table 3). Both studies concluded
that the SWAT model could be successfully used to satisfac‐
torily simulate nutrient losses. SWAT‐predicted ammonia
was close to the observed value (table 3) for the Heihe River
study in China (Cheng et al., 2006). Three studies conducted
in Finland for the Vantaanjoki River (Grizzetti et al. 2003;
Bouraoui et al. 2004) and Kerava River (Francos et al., 2001)
watersheds reported that SWAT N and P simulations were
generally satisfactory. Plus et al. (2006) evaluated SWAT
from data on two rivers in the Thau Lagoon watershed, which
drains part of the French Mediterranean coast. The best cor‐
relations were found for nitrate loads, and the worst for am‐
monia loads (table 3). Gikas et al. (2005) evaluated SWAT
using nine gauges within the Vistonis Lagoon watershed in
Greece and found that the monthly validation statistics gener‐
ally indicated good model performance for nitrate and total
P (table 3). SWAT nitrate and total phosphorus predictions
were found to be excellent and good, respectively, by Abbas‐
pour et al. (2007) for the 1700 km2 Thur River basin in Swit‐
zerland. Bouraoui et al. (2005) applied SWAT to a part of the
Medjerda River basin, the largest surface water reservoir in
Tunisia, and reported that SWAT was able to predict the range
of nitrate concentrations in surface water, but lack of data pre‐
vented in‐depth evaluation.

Pesticide and Surfactant Studies
Simulations of isoaxflutole (and its metabolite RPA

202248) were performed by Ramanarayanan et al. (2005)
with SWAT for four watersheds in Iowa, Nebraska, and Mis‐
souri that ranged in size from 0.49 to 1,434.6 km2. Satisfacto‐
ry validation results were obtained based on comparisons
with measured data. Long‐term simulations indicated that
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accumulation  would not be a problem for either compound
in semistatic water bodies. Kannan et al. (2006) report that
SWAT accurately simulated movement of four pesticides for
the Colworth watershed in the U.K. The results of different
application timing and split application scenarios are also de‐
scribed. Two scenarios of surfactant movement are described
by Kannan et al. (2007a) for the same watershed. Prediction
of atrazine greatly improved using SWAT‐M as reported by
Du et al. (2006) for the Walnut Creek watershed in Iowa
(table 3), which is a heavily tile‐drained watershed. Vazquez‐
Amabile et al. (2006) found that SWAT was very sensitive to
the estimated timing of atrazine applications in the 2,800 km2

St. Joseph River watershed in northeast Indiana. The pre‐
dicted atrazine mass at the watershed outlet was in close
agreement with measured loads for the period of September
through April during 2000‐2003. Graphical and statistical
analyses indicated that the model replicated atrazine move‐
ment trends well, but the NSE statistics (e.g., table 3) were
generally weak.

Scenarios of BMP and Land Use Impacts on Pollutant
Losses

Simulation of hypothetical scenarios in SWAT has proven
to be an effective method of evaluating alternative land use,
BMP, and other factors on pollutant losses. SWAT studies in
India include identification of critical or priority areas for soil
and water management in a watershed (Kaur et al., 2004; Tri‐
pathi et al., 2003). Santhi et al. (2006) report the impacts of
manure and nutrient related BMPs, forage harvest manage‐
ment, and other BMPs on water quality in the West Fork wa‐
tershed in Texas. The effects of BMPs related to dairy manure
management  and municipal wastewater treatment plant ef‐
fluent were evaluated by Santhi et al. (2001b) with SWAT for
the Bosque River watershed in Texas. Stewart et al. (2006)
describe modifications of SWAT for incorporation of a turf‐
grass harvest routine, in order to simulate manure and soil
P�export that occurs during harvest of turfgrass sod within the
upper North Bosque River watershed in north central Texas.
Kirsch et al. (2002) describe SWAT results showing that im‐
proved tillage practices could result in reduced sediment
yields of almost 20% in the Rock River in Wisconsin. Chaplot
et al. (2004) found that adoption of no tillage, changes in ni‐
trogen application rates, and land use changes could greatly
impact nitrogen losses in the Walnut Creek watershed in cen‐
tral Iowa. Analysis of BMPs by Vaché et al. (2002) for the
Walnut Creek and Buck Creek watersheds in Iowa indicated
that large sediment reductions could be obtained, depending
on BMP choice. Bracmort et al. (2006) present the results of
three 25‐year SWAT scenario simulations for two small wa‐
tersheds in Indiana in which the impacts of no BMPs, BMPs
in good condition, and BMPs in varying condition are re‐
ported for streamflow, sediment, and total P. Nelson et al.
(2005) report that large nutrient and sediment loss reductions
occurred in response to simulated shifts of cropland into
switchgrass production within the 3,000 km2 Delaware River
basin in northeast Kansas. Benham et al. (2006) describe a
TMDL SWAT application for a watershed in southwest Mis‐
souri. Frequency curves comparing simulated and measured
bacteria concentrations were used to calibrate SWAT. The
model was then used to simulate the contributions of different
bacteria sources to the stream system, and to assess the im‐
pact of different BMPs that could potentially be used to miti‐
gate bacteria losses in the watershed.

CLIMATE CHANGE IMPACT STUDIES
Climate change impacts can be simulated directly in

SWAT by accounting for: (1) the effects of increased atmo‐
spheric CO2 concentrations on plant development and tran‐
spiration, and (2) changes in climatic inputs. Several SWAT
studies provide useful insights regarding the effects of arbi‐
trary CO2 fertilization changes and/or other climatic input
shifts on plant growth, streamflow, and other responses, in‐
cluding Stonefelt et al. (2000), Fontaine et al. (2001), and Jha
et al. (2006). The SWAT results reported below focus on ap‐
proaches that relied on downscaling of climate change pro‐
jections generated by general circulation models (GCMs) or
GCMs coupled with regional climate models (RCMs).

SWAT Studies Reporting Climate Change Impacts on
Hydrology

Muttiah and Wurbs (2002) used SWAT to simulate the im‐
pacts of historical climate trends versus a 2040‐2059 climate
change projection for the 7,300 km2 San Jacinto River basin
in Texas. They report that the climate change scenario re‐
sulted in a higher mean streamflow due to greater flooding
and other high flow increases, but that normal and low
streamflows decreased. Gosain et al. (2006) simulated the
impacts of a 2041‐2060 climate change scenario on the
streamflows of 12 major river basins in India, ranging in size
from 1,668 to 87,180 km2. Surface runoff was found to gener‐
ally decrease, and the severity of both floods and droughts in‐
creased, in response to the climate change projection.

Rosenberg et al. (2003) simulated the effect of down‐
scaled HadCM2 GCM (Johns et al., 1997) climate projec‐
tions on the hydrology of the 18 MWRRs (fig. 2) with SWAT
within the HUMUS framework. Water yields were predicted
to change from -11% to 153% and from 28% to 342% across
the MWRRs in 2030 and 2095, respectively, relative to base‐
line conditions. Thomson et al. (2003) used the same
HadCM2‐HUMUS (SWAT) approach and found that three El
Niño/Southern Oscillation (ENSO) scenarios resulted in
MWRR water yield impacts ranging from -210% to 77% rel‐
ative to baseline levels, depending on seasonal and dominant
weather patterns. An analysis of the impacts of 12 climate
change scenarios on the water resources of the 18 MWRRs
was performed by Thomson et al. (2005) using the HUMUS
approach, as part of a broader study that comprised the entire
issue of volume 69 (number 1) of Climatic Change. Water
yield shifts exceeding ±50% were predicted for portions of
Midwest and Southwest U.S., relative to present water yield
levels. Rosenberg et al. (1999) found that driving SWAT with
a different set of 12 climate projections generally resulted in
Ogallala Aquifer recharge decreases (of up to 77%) within
the Missouri and Arkansas‐White‐Red MWRRs (fig. 2).

Stone et al. (2001) predicted climate change impacts on
Missouri River basin (fig. 2) water yields by inputting down‐
scaled climate projections into SWAT, which were generated
by nesting the RegCM RCM (Giorgi et al., 1998) within the
CISRO GCM (Watterson et al., 1997) into the previously de‐
scribed version of SWAT that was modified by Hotchkiss et
al. (2000). A structure similar to the HUMUS approach was
used, in which 310 8‐digit watersheds were used to define the
subwatersheds. Water yields declined at the basin outlet by
10% to 20% during the spring and summer months, but in‐
creased during the rest of the year. Further research revealed
that significant shifts in Missouri River basin water yield im‐
pacts were found when SWAT was driven by downscaled
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CISRO GCM projections only versus the nested RegCM‐
CISRO GCM approach (Stone et al., 2003).

Jha et al. (2004b), Takle et al. (2005), and Jha et al. (2006)
all report performing GCM‐driven studies for the
447,500�km2 upper Mississippi River basin (fig. 2), with an
assumed outlet at Grafton, Illinois, using a framework con‐
sisting of 119 8‐digit subwatersheds and land use, soil, and to‐
pography data that was obtained from BASINS. Jha et al.
(2004b) found that streamflows in the upper Mississippi Riv‐
er basin increased by 50% for the period 2040‐2049, when
climate projections generated by a nested RegCM2‐HadCM2
approach were used to drive SWAT. Jha et al. (2006) report
that annual average shifts in upper Mississippi River basin
streamflows, relative to the baseline, ranged from -6% to
38% for five 2061‐2090 GCM projections and increased by
51% for a RegCM‐CISRO projection reported by Giorgi et al.
(1998). An analysis of driving SWAT with precipitation out‐
put generated with nine GCM models indicated that GCM
multi‐model  results may be used to depict 20th century annu‐
al streamflows in the upper Mississippi River basin, and that
the interface between the single high‐resolution GCM used
in the study and SWAT resulted in the best replication of ob‐
served streamflows (Takle et al., 2005).

Krysanova et al. (2005) report the impacts of 12 different
climate scenarios on the hydrologic balance and crop yields
of a 30,000 km2 watershed in the state of Brandenburg in Ger‐
many using the SWIM model. Further uncertainty analysis of
climate change was performed by Krysanova et al. (2007) for
the 100,000 km2 Elbe River basin in eastern Germany, based
on an interface between a downscaled GCM scenario and
SWIM. Eckhardt and Ulbrich (2003) found that the spring
snowmelt peak would decline, winter flooding would likely
increase, and groundwater recharge and streamflow would
decrease by as much as 50% in response to two climate
change scenarios simulated in SWAT‐G. Their approach fea‐
tured variable stomatal conductance and leaf area responses
by incorporating different stomatal conductance decline fac‐
tors and leaf area index (LAI) values as a function of five
main vegetation types; these refinements have not been
adopted in the standard SWAT model.

SWAT Studies Reporting Climate Change Impacts on
Pollutant Loss

Several studies report climate change impacts on both
hydrology and pollutant losses using SWAT, including four
that were partially or completely supported by the EU
CHESS project (Varanou et al., 2002; Bouraoui et al., 2002;
Boorman, 2003; Bouraoui et al., 2004). Nearing et al. (2005)
compared runoff and erosion estimates from SWAT versus
six other models, in response to six climate change scenarios
that were simulated for the 150 km2 Lucky Hills watershed
in southeastern Arizona. The responses of all seven models
were similar across the six scenarios for both watersheds, and
it was concluded that climate change could potentially result
in significant soil erosion increases if necessary conservation
efforts are not implemented. Hanratty and Stefan (1998)
found that streamflows and P, organic N, nitrate, and sedi‐
ment yields generally decreased for the 3,400 km2 Cotton‐
wood River watershed in southwest Minnesota in response to
a downscaled 2×CO2 GCM climate change scenario. Vara‐
nou et al. (2002) also found that average streamflows, sedi‐
ment yields, organic N losses, and nitrate losses decreased in
most months in response to nine different climate change sce‐

narios downscaled from three GCMs for the 2,796 km2 Pinios
watershed in Greece. Bouraoui et al. (2002) reported that six
different climate change scenarios resulted in increased total
nitrogen and phosphorus loads of 6% to 27% and 5% to 34%,
respectively, for the 3,500 km2 Ouse River watershed located
in the Yorkshire region of the U.K. Bouraoui et al. (2004) fur‐
ther found for the Vantaanjoki River watershed, which covers
1,682 km2 in southern Finland, that snow cover decreased,
winter runoff increased, and slight increases in annual nutri‐
ent losses occurred in response to a 34‐year scenario repre‐
sentative of observed climatic changes in the region.
Boorman (2003) evaluated the impacts of climate change for
five different watersheds located in Italy, France, Finland,
and the UK., including the three watersheds analyzed in the
Varanou et al. (2002), Bouraoui et al. (2002), and Bouraoui
et al. (2004) studies.

SENSITIVITY, CALIBRATION, AND UNCERTAINTY ANALYSES

Sensitivity, calibration, and uncertainty analyses are vital
and interwoven aspects of applying SWAT and other models.
Numerous sensitivity analyses have been reported in the
SWAT literature, which provide valuable insights regarding
which input parameters have the greatest impact on SWAT
output. As previously discussed, the vast majority of SWAT
applications report some type of calibration effort. SWAT in‐
put parameters are physically based and are allowed to vary
within a realistic uncertainty range during calibration. Sensi‐
tivity analysis and calibration techniques are generally re‐
ferred to as either manual or automated, and can be evaluated
with a wide range of graphical and/or statistical procedures.

Uncertainty is defined by Shirmohammadi et al. (2006) as
“the estimated amount by which an observed or calculated
value may depart from the true value.” They discuss sources
of uncertainty in depth and list model algorithms, model cal‐
ibration and validation data, input variability, and scale as
key sources of uncertainty. Several automated uncertainty
analyses approaches have been developed, which incorpo‐
rate various sensitivity and/or calibration techniques, which
are briefly reviewed here along with specific sensitivity anal‐
ysis and calibration studies.

Sensitivity Analyses
Spruill et al. (2000) performed a manual sensitivity/cal‐

ibration analysis of 15 SWAT input parameters for a 5.5 km2

watershed with karst characteristics in Kentucky, which
showed that saturated hydraulic conductivity, alpha base
flow factor, drainage area, channel length, and channel width
were the most sensitive parameters that affected streamflow.
Arnold et al. (2000) show surface runoff, base flow, recharge,
and soil ET sensitivity curves in response to manual varia‐
tions in the curve number, soil available water capacity, and
soil evaporation coefficient (ESCO) input parameters for
three different 8‐digit watersheds within their upper Missis‐
sippi River basin SWAT study. Lenhart et al. (2002) report on
the effects of two different sensitivity analysis schemes using
SWAT‐G for an artificial watershed, in which an alternative
approach of varying 44 parameter values within a fixed per‐
centage of the valid parameter range was compared with the
more usual method of varying each initial parameter by the
same fixed percentage. Both approaches resulted in similar
rankings of parameter sensitivity and thus could be consid‐
ered equivalent.
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A two‐step sensitivity analysis approach is described by
Francos et al. (2003), which consists of: (1) a “Morris”
screening procedure that is based on the one factor at a time
(OAT) design, and (2) the use of a Fourier amplitude sensitiv‐
ity test (FAST) method. The screening procedure is used to
determine the qualitative ranking of an entire input parameter
set for different model outputs at low computational cost,
while the FAST method provides an assessment of the most
relevant input parameters for a specific set of model output.
The approach is demonstrated with SWAT for the 3,500 km2

Ouse watershed in the U.K. using 82 input and 22 output pa‐
rameters. Holvoet et al. (2005) present the use of a Latin hy‐
percube (LH) OAT sampling method, in which initial LH
samples serve as the points for the OAT design. The method
was used for determining which of 27 SWAT hydrologic‐
related input parameters were the most sensitive regarding
streamflow and atrazine outputs for 32 km2 Nil watershed in
central Belgium. The LH‐OAT method was also used by van
Griensven et al. (2006b) for an assessment of the sensitivity
of 41 input parameters on SWAT flow, sediment, total N, and
total P estimates for both the UNBRW and the 3,240 km2 San‐
dusky River watershed in Ohio. The results show that some
parameters,  such as the curve number (CN2), were important
in both watersheds, but that there were distinct differences in
the influences of other parameters between the two wa‐
tersheds. The LH‐OAT method has been incorporated as part
of the automatic sensitivity/calibration package included in
SWAT2005.

Calibration Approaches
The manual calibration approach requires the user to

compare measured and simulated values, and then to use ex‐
pert judgment to determine which variables to adjust, how
much to adjust them, and ultimately assess when reasonable
results have been obtained. Coffey et al. (2004) present near‐
ly 20 different statistical tests that can be used for evaluating
SWAT streamflow output during a manual calibration pro‐
cess. They recommended using the NSE and R2 coefficients
for analyzing monthly output and median objective func‐
tions, sign test, autocorrelation, and cross‐correlation for as‐
sessing daily output, based on comparisons of SWAT
streamflow results with measured streamflows (table 2) for
the same watershed studied by Spruill et al. (2000). Cao et al.
(2006) present a flowchart of their manual calibration ap‐
proach that was used to calibrate SWAT based on five hydro‐
logic outputs and multiple gauge sites within the 2075 km2

Motueka River basin on the South Island of New Zealand.
The calibration and validation results were stronger for the
overall basin as compared to results obtained for six subwa‐
tersheds (table 2). Santhi et al. (2001a) successfully cali‐
brated and validated SWAT for streamflow and pollutant loss
simulations (tables 2 and 3) for the 4,277 km2 Bosque River
in Texas. They present a general procedure, including a flow‐
chart, for manual calibration that identifies sensitive input
parameters (15 were used), realistic uncertainty ranges, and
reasonable regression results (i.e., satisfactory r2 and NSE
values). A combined sensitivity and calibration approach is
described by White and Chaubey (2005) for SWAT stream‐
flow and pollutant loss estimates (tables 2 and 3) for the
3,100�km2 Bear Reservoir watershed, and three subwa‐
tersheds, in northwest Arkansas. They also review calibra‐
tion approaches, including calibrated input parameters, for
previous SWAT studies.

Automated techniques involve the use of Monte Carlo or
other parameter estimation schemes that determine automat‐
ically what the best choice of values are for a suite of parame‐
ters, usually on the basis of a large set of simulations, for a
calibration process. Govender and Everson (2005) used the
automatic Parameter Estimation (PEST) program (Doherty,
2004) and identified soil moisture variables, initial ground‐
water variables, and runoff curve numbers to be some of the
sensitive parameters in SWAT applications for two small
South African watersheds. They also report that manual cal‐
ibration resulted in more accurate predictions than the PEST
approach (table 2). Wang and Melesse (2005) also used PEST
to perform an automatic SWAT calibration of three
snowmelt‐related  and eight hydrologic‐related parameters
for the 4,335 km2 Wild Rice River watershed in northwest
Minnesota, which included daily and monthly statistical
evaluation (table 2).

Applications of an automatic shuffled complex evolution
(SCE) optimization scheme are described by van Griensven
and Bauwens (2003, 2005) for ESWAT simulations, primari‐
ly for the Dender River in Belgium. Calibration parameters
and ranges along with measured daily flow and pollutant data
are input for each application. The automated calibration
scheme executes up to several thousand model runs to find
the optimum input data set. Similar automatic calibration
studies were performed with a SCE algorithm and SWAT‐G
by Eckhardt and Arnold (2001) and Eckhardt et al. (2005) for
watersheds in Germany. Di Luzio and Arnold (2004) de‐
scribed the background, formulation and results (table 2) of
an hourly SCE input‐output calibration approach used for a
SWAT application in Oklahoma. Van Liew et al. (2005) de‐
scribe an initial test of the SCE automatic approach that has
been incorporated into SWAT2005, for streamflow predic‐
tions for the Little River watershed in Georgia and the Little
Washita River watershed in Oklahoma. Van Liew et al.
(2007) further evaluated the SCE algorithm for five wa‐
tersheds with widely varying climatic characteristics
(table�2),  including the same two in Georgia and Oklahoma
and three others located in Arizona, Idaho, and Pennsylvania.

Uncertainty Analyses
Shirmohammadi  et al. (2006) state that Monte Carlo simu‐

lation and first‐order error or approximation (FOE or FOA)
analyses are the two most common approaches for perform‐
ing uncertainty analyses, and that other methods have been
used, including the mean value first‐order reliability method,
LH simulation with constrained Monte Carlo simulations,
and generalized likelihood uncertainty estimation (GLUE).
They present three case studies of uncertainty analyses using
SWAT, which were based on the Monte Carlo, LH‐Monte
Carlo, and GLUE approaches, respectively, within the con‐
text of TMDL assessments. They report that uncertainty is a
major issue for TMDL assessments, and that it should be tak‐
en into account during both the TMDL assessment and imple‐
mentation phases. They also make recommendations to
improve the quantification of uncertainty in the TMDL pro‐
cess.

Benaman and Shoemaker (2004) developed a six‐step meth‐
od that includes using Monte Carlo runs and an interval‐spaced
sensitivity approach to reduce uncertain parameter ranges. After
parameter range reduction, their method reduced the model out‐
put range by an order of magnitude, resulting in reduced uncer‐
tainty and the amount of calibration required for SWAT.
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However, significant uncertainty remained with the SWAT sedi‐
ment routine. Lin and Radcliffe (2006) performed an initial two‐
stage automatic calibration streamflow prediction process with
SWAT for the 1,580 km2 Etowah River watershed in Georgia in
which an SCE algorithm was used for automatic calibration of
lumped SWAT input parameters, followed by calibration of het‐
erogeneous inputs with a variant of the Marquardt‐Levenberg
method in which “regularization” was used to prevent parame‐
ters taking on unrealistic values. They then performed a nonlin‐
ear calibration and uncertainty analysis using PEST, in which
confidence intervals were generated for annual and 7‐day
streamflow estimates. Their resulting calibrated statistics are
shown in table 2. Muleta and Nicklow (2005b) describe a study
for the Big Creek watershed that involved three phases: (1) pa‐
rameter sensitivity analysis for 35 input parameters, in which
LH samples were used to reduce the number of Monte Carlo
simulations needed to conduct the analysis; (2) automatic cal‐
ibration using a genetic algorithm, which systematically deter‐
mined the best set of input parameters using a sum of the square
of differences criterion; and (3) a Monte Carlo‐based GLUE ap‐
proach for the uncertainty analysis, in which LH sampling is
again used to generate input samples and reduce the computa‐
tion requirements. Uncertainty bounds corresponding to the
95% confidence limit are reported for both streamflow and sedi‐
ment loss, as well as final calibrated statistics (tables 2 and 3).
Arabi et al. (2007b) used a three‐step procedure that included
OAT and interval‐spaced sensitivity analyses, and a GLUE
analysis to assess uncertainty of SWAT water quality predictions
of BMP placement in the Dreisbach and Smith Fry watersheds
in Indiana. Their results point to the need for site‐specific cal‐
ibration of some SWAT inputs, and that BMP effectiveness
could be evaluated with enough confidence to justify using the
model for TMDL and similar assessments.

Additional uncertainty analysis insights are provided by
Vanderberghe et al. (2007) for an ESWAT‐based study and by
Huisman et al. (2004) and Eckhardt et al. (2003), who as‐
sessed the uncertainty of soil and/or land use parameter varia‐
tions on SWAT‐G output using Monte Carlo‐based
approaches. Van Greinsven and Meixner (2006) describe sev‐
eral uncertainty analysis tools that have been incorporated
into SWAT2005, including a modified SCE algorithm called
“parameter solutions” (ParaSol), the Sources of Uncertainty
Global Assessment using Split Samples (SUNGLASSES),
and the Confidence Analysis of Physical Inputs (CANOPI),
which evaluates uncertainty associated with climatic data
and other inputs.

EFFECTS OF HRU AND SUBWATERSHED DELINEATION AND

OTHER INPUTS ON SWAT OUTPUT
Several studies have been performed that analyzed im‐

pacts on SWAT output as a function of: (1) variation in HRU
and/or subwatershed delineations, (2) different resolutions in
topographic, soil, and/or land use data, (3) effects of spatial
and temporal transfers of inputs, (4) actual and/or hypotheti‐
cal shifts in land use, and (5) variations in precipitation inputs
or ET estimates. These studies serve as further SWAT sensi‐
tivity analyses and provide insight into how the model re‐
sponds to variations in key inputs.

HRU and Subwatershed Delineation Effects
Bingner et al. (1997), Manguerra and Engel (1998), Fitz‐

Hugh and Mackay (2000), Jha et al. (2004a), Chen and
Mackay (2004), Tripathi et al. (2006), and Muleta et al.

(2007) found that SWAT streamflow predictions were gener‐
ally insensitive to variations in HRU and/or subwatershed de‐
lineations for watersheds ranging in size from 21.3 to
17,941�km2. Tripathi et al. (2006) and Muleta et al. (2007)
further discuss HRU and subwatershed delineation impacts
on other hydrologic components. Haverkamp et al. (2002) re‐
port that streamflow accuracy was much greater when using
multiple HRUs to characterize each subwatershed, as op‐
posed to using just a single dominant soil type and land use
within a subwatershed, for two watersheds in Germany and
one in Texas. However, the gap in accuracy between the two
approaches decreased with increasing numbers of subwa‐
tersheds.

Bingner et al. (1997) report that the number of simulated
subwatersheds affected predicted sediment yield and suggest
that sensitivity analyses should be performed to determine
the appropriate level of subwatersheds. Jha et al. (2004a)
found that SWAT sediment and nitrate predictions were sen‐
sitive to variations in both HRUs and subwatersheds, but
mineral P estimates were not. The effects of BMPS on SWAT
sediment, total P, and total N estimates was also found by
Arabi et al. (2006b) to be very sensitive to watershed subdivi‐
sion level. Jha et al. (2004a) suggest setting subwatershed
areas ranging from 2% to 5% of the overall watershed area,
depending on the output indicator of interest, to ensure accu‐
racy of estimates. Arabi et al. (2006b) found that an average
subwatershed equal to about 4% of the overall watershed area
was required to accurately account for the impacts of BMPs
in the model.

FitzHugh and Mackay (2000, 2001) and Chen and Mackay
(2004) found that sediment losses predicted with SWAT did
not vary at the outlet of the 47.3 km2 Pheasant Branch wa‐
tershed in south central Wisconsin as a function of increasing
numbers of HRUs and subwatersheds due to the transport‐
limited nature of the watershed. However, sediment genera‐
tion at the HRU level dropped 44% from the coarsest to the
finest resolutions (FitzHugh and Mackay, 2000), and sedi‐
ment yields varied at the watershed outlet for hypothetical
source‐limited versus transport‐limited scenarios (FitzHugh
and Mackay, 2001) in response to eight different HRU/sub‐
watershed combinations used in both studies. Chen and
Mackay (2004) further found that SWAT's structure in‐
fluences sediment predictions in tandem with spatial data ag‐
gregation effects. They suggest that errors in MUSLE
sediment estimates can be avoided by using only subwa‐
tersheds, instead of using HRUs, within subwatersheds.

In contrast, Muleta et al. (2007) found that sediment gen‐
erated at the HRU level and exported from the outlet of the
133 km2 Big Creek watershed in Illinois decreased with in‐
creasing spatial coarseness, and that sediment yield varied
significantly at the watershed outlet across a range of HRU
and subwatershed delineations, even when the channel prop‐
erties remained virtually constant.

DEM, Soil, and Land Use Resolution Effects
Bosch et al. (2004) found that SWAT streamflow estimates

for a 22.1 km2 subwatershed of the Little River watershed in
Georgia were more accurate using high‐resolution topo‐
graphic, land use, and soil data versus low‐resolution data ob‐
tained from BASINS. Cotter et al. (2003) report that DEM
resolution was the most critical input for a SWAT simulation
of the 18.9 km2 Moores Creek watershed in Arkansas, and
provide minimum DEM, land use, and soil resolution recom‐
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mendations to obtain accurate flow, sediment, nitrate, and to‐
tal P estimates. Di Luzio et al. (2005) also found that DEM
resolution was the most critical for SWAT simulations of the
21.3 km2 Goodwin Creek watershed in Mississippi; land use
resolution effects were also significant, but the resolution of
soil inputs was not. Chaplot (2005) found that SWAT surface
runoff estimates were sensitive to DEM mesh size, and that
nitrate and sediment predictions were sensitive to both the
choice of DEM and soil map resolution, for the Walnut Creek
watershed in central Iowa. The most accurate results did not
occur for the finest DEM mesh sizes, contrary to expecta‐
tions. Di Luzio et al. (2004b) and Wang and Melesse (2006)
present additional results describing the impacts of STATS‐
GO versus SSURGO soil data inputs on SWAT output.

Effects of Different Spatial and Temporal Transfers of
Inputs

Heuvelmans et al. (2004a) evaluated the effects of trans‐
ferring seven calibrated SWAT hydrologic input parameters,
which were selected on the basis of a sensitivity analysis, in
both time and space for three watersheds ranging in size from
51 to 204 km2 in northern Belgium. Spatial transfers resulted
in the greatest loss of streamflow efficiency, especially be‐
tween watersheds. Heuvelmans et al. (2004b) further evalu‐
ated the effect of four parameterization schemes on SWAT
streamflow predictions, for the same set of seven hydrologic
inputs, for 25 watersheds that covered 2.2 to 210 km2 within
the 20,000 km2 Scheldt River basin in northern Belgium. The
highest model efficiencies were achieved when optimal pa‐
rameters for each individual watershed were used; optimal
parameters selected on the basis of regional zones with simi‐
lar characteristics proved superior to parameters that were
averaged across all 25 watersheds.

Historical and Hypothetical Land Use Effects
Miller et al. (2002) describe simulated streamflow im‐

pacts with SWAT in response to historical land use shifts in
the 3,150 km2 San Pedro watershed in southern Arizona and
the Cannonsville watershed in south central New York.
Streamflows were predicted to increase in the San Pedro wa‐
tershed due to increased urban and agricultural land use,
while a shift from agricultural to forest land use was predicted
to result in a 4% streamflow decrease in the Cannonsville wa‐
tershed. Hernandez et al. (2000) further found that SWAT
could accurately predict the relative impacts of hypothetical
land use change in an 8.2 km2 experimental subwatershed
within the San Pedro watershed. Heuvelmans et al. (2005) re‐
port that SWAT produced reasonable streamflow and erosion
estimates for hypothetical land use shifts, which were per‐
formed as part of a life cycle assessment (LCA) of CO2 emis‐
sion reduction scenarios for the 29.2 km2 Meerdaal
watershed and the 12.1 km2 Latem watersheds in northern
Belgium. However, they state that an expansion of the SWAT
vegetation parameter dataset is needed in order to fully sup‐
port LCA analyses. Increased streamflow was predicted with
SWAT for the 59.8 km2 Aar watershed in the German state of
Hessen, in response to a grassland incentive scenario in
which the grassland area increased from 20% to 41% while
the extent forest coverage decreased by about 70% (Weber et
al., 2001). The impacts of hypothetical forest and other land
use changes on total runoff using SWAT are presented by
Lorz et al. (2007) in the context of comparisons with three
other models. The impacts of other hypothetical land use
studies for various German watersheds have been reported on

hydrologic impacts with SWAT‐G (e.g., Fohrer et al., 2002,
2005) and SWIM (Krysanova et al., 2005) and on nutrient and
sediment loss predictions with SWAT‐G (Lenhart et al.,
2003).

Climate Data Effects
Chaplot et al. (2005) analyzed the effects of rain gauge

distribution on SWAT output by simulating the impacts of cli‐
matic inputs for a range of 1 to 15 rain gauges in both the Wal‐
nut Creek watershed in central Iowa and the upper North
Bosque River watershed in Texas. Sediment predictions im‐
proved significantly when the densest rain gauge networks
were used; only slight improvements occurred for the corre‐
sponding surface runoff and nitrogen predictions. However,
Hernandez et al. (2000) found that increasing the number of
simulated rain gauges from 1 to 10 resulted in clear estimated
streamflow improvements (table 2). Moon et al. (2004) found
that SWAT's streamflow estimates improved when Next‐
Generation Weather Radar (NEXRAD) precipitation input
was used instead of rain gauge inputs (table 2). Kalin and
Hantush (2006) report that NEXRAD and rain gauge inputs
resulted in similar streamflow estimates at the outlet of the
Pocono Creek watershed in Pennsylvania (table 2), and that
NEXRAD data appear to be a promising source of alternative
precipitation data. A weather generator developed by Schuol
and Abbaspour (2007) that uses climatic data available at
0.5° intervals was found to result in better streamflow esti‐
mates than rain gauge data for a region covering about 4 mil‐
lion km2 in western Africa that includes the Niger, Volta, and
Senegal river basins. Sensitivity of precipitation inputs on
SWAT hydrologic output are reported for comparisons of dif‐
ferent weather generators by Harmel et al. (2000) and Watson
et al. (2005). The effects of different ET options available in
SWAT on streamflow estimates are further described by
Wang et al. (2006) and Kannan et al. (2007b).

COMPARISONS OF SWAT WITH OTHER MODELS

Borah and Bera (2003, 2004) compared SWAT with sever‐
al other watershed‐scale models. In the 2003 study, they re‐
port that the Dynamic Watershed Simulation Model
(DWSM) (Borah et al., 2004), Hydrologic Simulation Pro‐
gram - Fortran (HSPF) model (Bicknell et al., 1997), SWAT,
and other models have hydrology, sediment, and chemical
routines applicable to watershed‐scale catchments and con‐
cluded that SWAT is a promising model for continuous simu‐
lations in predominantly agricultural watersheds. In the 2004
study, they found that SWAT and HSPF could predict yearly
flow volumes and pollutant losses, were adequate for month‐
ly predictions except for months having extreme storm
events and hydrologic conditions, and were poor in simulat‐
ing daily extreme flow events. In contrast, DWSM reason‐
ably predicted distributed flow hydrographs and
concentration or discharge graphs of sediment and chemicals
at small time intervals. Shepherd et al. (1999) evaluated
14�models and found SWAT to be the most suitable for esti‐
mating phosphorus loss from a lowland watershed in the U.K.

Van Liew et al. (2003a) compared the streamflow predic‐
tions of SWAT and HSPF on eight nested agricultural wa‐
tersheds within the Little Washita River basin in south-
western Oklahoma. They concluded that SWAT was more
consistent than HSPF in estimating streamflow for different
climatic conditions and may thus be better suited for investi‐
gating the long‐term impacts of climate variability on surface
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water resources. Saleh and Du (2004) found that the average
daily flow, sediment loads, and nutrient loads simulated by
SWAT were closer than HSPF to measured values collected
at five sites during both the calibration and verification peri‐
ods for the upper North Bosque River watershed in Texas.
Singh et al. (2005) found that SWAT flow predictions were
slightly better than corresponding HSPF estimates for the
5,568 km2 Iroquois River watershed in eastern Illinois and
western Indiana, primarily due to better simulation of low
flows by SWAT. Nasr et al. (2007) found that HSPF predicted
mean daily discharge most accurately, while SWAT simu‐
lated daily total phosphorus loads the best, in a comparison
of three models for three Irish watersheds that ranged in size
from 15 to 96 km2. El‐Nasr et al. (2005) found that both
SWAT and the MIKE‐SHE model (Refsgaard and Storm,
1995) simulated the hydrology of Belgium's Jeker River ba‐
sin in an acceptable way. However, MIKE‐SHE predicted the
overall variation of river flow slightly better.

Srinivasan et al. (2005) found that SWAT estimated flow
more accurately than the Soil Moisture Distribution and
Routing (SMDR) model (Cornell, 2003) for 39.5 ha FD‐36
experimental  watershed in east central Pennsylvania, and
that SWAT was also more accurate on a seasonal basis. SWAT
estimates were also found to be similar to measured dissolved
and total P for the same watershed, and 73% of the 22 fields
in the watershed were categorized similarly on the basis of
the SWAT analysis as compared to the Pennsylvania P index
(Veith et al., 2005). Grizzetti et al. (2005) reported that both
SWAT and a statistical approach based on the SPARROW
model (Smith et al., 1997) resulted in similar total oxidized
nitrogen loads for two monitoring sites within the 1,380 km2

Great Ouse watershed in the U.K. They also state that the sta‐
tistical reliability of the two approaches was similar, and that
the statistical model should be viewed primarily as a screen‐
ing tool while SWAT is more useful for scenarios. Srivastava
et al. (2006) found that an artificial neural network (ANN)
model was more accurate than SWAT for streamflow simula‐
tions of a small watershed in southeast Pennsylvania.

INTERFACES OF SWAT WITH OTHER MODELS
Innovative applications have been performed by interfac‐

ing SWAT with other environmental and/or economic mod‐
els. These interfaces have expanded the range of scenarios
that can be analyzed and allowed for more in‐depth assess‐
ments of questions that cannot be considered with SWAT by
itself, such as groundwater withdrawal impacts or the costs
incurred from different choices of management practices.

SWAT with MODFLOW and/or Surface Water Models
Sophocleus et al. (1999) describe an interface between

SWAT and the MODFLOW groundwater model (McDonald
and Harbaugh, 1988) called SWATMOD, which they used to
evaluate water rights and withdrawal rate management sce‐
narios on stream and aquifer responses for the Rattlesnake
Creek watershed in south central Kansas. The system was
used by Sophocleus and Perkins (2000) to investigate irriga‐
tion effects on streamflow and groundwater levels in the low‐
er Republican River watershed in north central Kansas and on
streamflow and groundwater declines within the Rattlesnake
Creek watershed. Perkins and Sophocleous (1999) describe
drought impact analyses with the same system. SWAT was
coupled with MODFLOW to study for the 12 km2 Coët‐Dan
watershed in Brittany, France (Conan et al., 2003a). Accurate

results were reported, with respective monthly NSE values
for streamflow and nitrate of 0.88 and 0.87.

Menking et al. (2003) interfaced SWAT with both MOD‐
FLOW and the MODFLOW LAK2 lake modeling package
to assess how current climate conditions would impact water
levels in ancient Lake Estancia (central New Mexico), which
existed during the late Pleistocene era. The results indicated
that current net inflow from the 5,000 km2 drainage basin
would have to increase by about a factor of 15 to maintain
typical Late Pleistocene lake levels. Additional analyses of
Lake Estancia were performed by Menking et al. (2004) for
the Last Glacial Maximum period. SWAT was interfaced
with a 3‐D lagoon model by Plus et al. (2006) to determine
nitrogen loads from a 280 km2 drainage area into the Thau
Lagoon, which lies along the south coast of France. The main
annual nitrogen load was estimated with SWAT to be 117 t
year-1; chlorophyll a concentrations, phytoplankton produc‐
tion, and related analyses were performed with the lagoon
model. Galbiati et al. (2006) interfaced SWAT with
QUAL2E, MODFLOW, and another model to create the Inte‐
grated Surface and Subsurface model (ISSm). They found
that the system accurately predicted water and nutrient inter‐
actions between the stream system and aquifer, groundwater
dynamics, and surface water and nutrient fluxes at the wa‐
tershed outlet for the 20 km2 Bonello coastal watershed in
northern Italy.

SWAT with Environmental Models or Genetic Algorithms
for BMP Analyses

Renschler and Lee (2005) linked SWAT with the Water
Erosion Prediction Project (WEPP) model (Ascough et al.,
1997) to evaluate both short‐ and long‐term assessments, for
pre‐ and post‐implementation, of grassed waterways and
field borders for three experimental watersheds ranging in
size from 0.66 to 5.11 ha. SWAT was linked directly to the
Geospatial Interface for WEPP (GeoWEPP), which facili‐
tated injection of WEPP output as point sources into SWAT.
The long‐term assessment results were similar to SWAT‐only
evaluations,  but the short‐term results were not. Cerucci and
Conrad (2003) determined the optimal riparian buffer config‐
urations for 31 subwatersheds in the 37 km2 Town Brook wa‐
tershed in south central New York, by using a binary
optimization approach and interfacing SWAT with the
Riparian Ecosystem Model (REMM) (Lowrance et al.,
2000). They determined the marginal utility of buffer widths
and the most affordable parcels in which to establish riparian
buffers. Pohlert et al. (2006) describe SWAT‐N, which was
created by extending the original SWAT2000 nitrogen
cycling routine primarily with algorithms from the
Denitrification‐Decomposition  (DNDC) model (Li et al.,
1992). They state that SWAT‐N was able to replicate nitrogen
cycling and loss processes more accurately than SWAT.

Muleta and Nicklow (2005a) interfaced SWAT with a ge‐
netic algorithm and a multiobjective evolutionary algorithm
to perform both single and multiobjective evaluations for the
130 km2 Big Creek watershed in southern Illinois. They
found that conversion of 10% of the HRUs into conservation
programs (cropping system/tillage practice BMPs), within a
maximum of 50 genetic algorithm generations, would result
in reduced sediment yield of 19%. Gitau et al. (2004) inter‐
faced baseline P estimates from SWAT with a genetic algo‐
rithm and a BMP tool containing site‐specific BMP
effectiveness estimates to determine the optimal on‐farm
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placement of BMPs so that P losses and costs were both mini‐
mized. The two most efficient scenarios met the target of re‐
ducing dissolved P loss by at least 60%, with corresponding
farm‐level cost increases of $1,430 and $1,683, respectively,
relative to the baseline. SWAT was interfaced with an eco‐
nomic model, a BMP tool, and a genetic algorithm by Arabi
et al. (2006a) to determine optimal placement for the Dreis‐
bach and Smith Fry watersheds in Indiana. The optimization
approach was found to be three times more cost‐effective as
compared to environmental targeting strategies.

SWAT with Economic and/or Environmental Models
A farm economic model was interfaced with the Agricul‐

tural Policy Extender (APEX) model (Williams and Izaur‐
ralde, 2006) and SWAT to simulated the economic and
environmental  impacts of manure management scenarios
and other BMPs for the 932.5 km2 upper North Bosque River
and 1,279 km2 Lake Fork Reservoir watersheds in Texas and
the 162.2 km2 upper Maquoketa River watershed in Iowa
(Gassman et al., 2002). The economic and environmental im‐
pacts of several manure application rate scenarios are de‐
scribed for each watershed, as well as for manure haul‐off,
intensive rotational grazing, and reduced fertilizer scenarios
that were simulated for the upper North Bosque River wa‐
tershed, Lake Fork Reservoir watershed, and upper Maquo‐
keta River watershed, respectively. Osei et al. (2003) report
additional stocking density scenario results for pasture‐based
dairy productions in the Lake Fork Reservoir watershed.
They concluded that appropriate pasture nutrient manage‐
ment, including stocking density adjustments and more effi‐
cient application of commercial fertilizer, could lead to
significant reductions in nutrient losses in the Lake Fork Res‐
ervoir watershed. Gassman et al. (2006) further assessed the
impacts of seven individual BMPs and four BMP combina‐
tions for upper Maquoketa River watershed. Terraces were
predicted to be very effective in reducing sediment and or‐
ganic nutrient losses but were also the most expensive prac‐
tice, while no‐till or contouring in combination with reduced
fertilizer rates were predicted to result in reductions of all
pollutant indictors and also positive net returns.

Lemberg et al. (2002) evaluated the economic impacts of
brush control in the Frio River basin in south central Texas
using SWAT, the Phytomass Growth Simulator (PHY‐
GROW) model (Rowan, 1995), and two economic models.
It was determined that subsidies on brush control would not
be worthwhile. Economic evaluations of riparian buffer
benefits in regards to reducing atrazine concentration and
other factors were performed by Qiu and Prato (1998) using
SWAT, a budget generator, and an economic model for the
77.4 km2 Goodwater Creek watershed in north central Mis‐
souri (riparian buffers were not directly simulated). The im‐
plementation  of riparian buffers was found to result in
substantial net economic return and savings in government
costs, due to reduced CRP rental payments. Qiu (2005) used
a similar approach for the same watershed to evaluate the
economic and environmental impacts of five different alter‐
native scenarios. SWAT was interfaced with a data envelope
analysis linear programming model by Whittaker et al.
(2003) to determine which of two policies would be most ef‐
fective in reducing N losses to streams in the 259,000 km2

Columbia Plateau region in the northwest U.S. The analysis
indicated that a 300% tax on N fertilizer would be more effi‐
cient than a mandated 25% reduction in N use. Evaluation of

different policies were demonstrated by Attwood et al.
(2000) by showing economic and environmental impacts at
the U.S. national scale and for Texas by linking SWAT with
an agricultural sector model. Volk et al. (2007) and Turpin et
al. (2005) describe respective modeling systems that include
interfaces between SWAT, an economic model, and other
models and data to simulate different watershed scales and
conditions in European watersheds.

SWAT with Ecological and Other Models
Weber et al. (2001) interfaced SWAT with the ecological

model ELLA and the Proland economic model to investigate
the streamflow and habitat impacts of a “grassland incentive
scenario” that resulted in grassland area increasing from 21%
to 40%, and forest area declining by almost 70%, within the
59.8 km2 Aar watershed in Germany. SWAT‐predicted
streamflow increased while Skylark bird habitat decreased in
response to the scenario. Fohrer et al. (2002) used SWAT‐G,
the YELL ecological model, and the Proland to assess the ef‐
fects of land use changes and associated hydrologic impacts
on habitat suitability for the Yellowhammer bird species. The
authors report effects of four average field size scenarios (0.5,
0.75, 1.0, and 2.0 ha) on land use, bird nest distribution and
habitat, labor and agricultural value, and hydrological re‐
sponse. SWAT is also being used to simulate crop growth,
hydrologic balance, soil erosion, and other environmental re‐
sponses by Christiansen and Altaweel (2006) within the EN‐
KIMDU modeling framework (named after the ancient
Sumerian god of agriculture and irrigation), which is being
used to study the natural and societal aspects of Bronze Age
Mesopotamian cultures.

SWAT STRENGTHS, WEAKNESSES, AND

RESEARCH NEEDS
The worldwide application of SWAT reveals that it is a

versatile model that can be used to integrate multiple envi‐
ronmental processes, which support more effective wa‐
tershed management and the development of better‐informed
policy decisions. The model will continue to evolve as users
determine needed improvements that: (1) will enable more
accurate simulation of currently supported processes, (2) in‐
corporate advancements in scientific knowledge, or (3) pro‐
vide new functionality that will expand the SWAT simulation
domain. This process is aided by the open‐source status of the
SWAT code and ongoing encouragement of collaborating
scientists to pursue needed model development, as demon‐
strated by a forthcoming set of papers in Hydrological
Sciences Journal describing various SWAT research needs
that were identified at the 2006 Model Developer's Work‐
shop held in Potsdam, Germany. The model has also been in‐
cluded in the Collaborative Software Development
Laboratory that facilitates development by multiple scien‐
tists (CoLab, 2006).

The foundational strength of SWAT is the combination of
upland and channel processes that are incorporated into one
simulation package. However, every one of these processes
is a simplification of reality and thus subject to the need for
improvement.  To some degree, the strengths that facilitate
widespread use of SWAT also represent weaknesses that need
further refinement, such as simplified representations of
HRUs. There are also problems in depicting some processes
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accurately due to a lack of sufficient monitoring data, inade‐
quate data needed to characterize input parameters, or insuf‐
ficient scientific understanding. The strengths and
weaknesses of five components are discussed here in more
detail, including possible courses of action for improving
current routines in the model. The discussion is framed to
some degree from the perspective of emerging applications,
e.g., bacteria die‐off and transport. Additional research needs
are also briefly listed for other components, again in the con‐
text of emerging application trends where applicable.

HYDROLOGIC INTERFACE

The use of the NRCS curve number method in SWAT has
provided a relatively easy way of adapting the model to a
wide variety of hydrologic conditions. The technique has
proved successful for many applications, as evidenced by the
results reported in this study. However, the embrace of the
method in SWAT and similar models has proved controver‐
sial due to the empirical nature of the approach, lack of com‐
plete historical documentation, poor results obtained for
some conditions, inadequate representation of “critical
source areas” that generate pollutant loss (which can occur
even after satisfactory hydrologic calibration of the model),
and other factors (e.g., Ponce and Hawkins, 1996; Agnew et
al., 2006; Bryant et al., 2006; Garen and Moore, 2005).

The Green‐Ampt method provides an alternative option in
SWAT, which was found by Rawls and Brakenseik (1986) to
be more accurate than the curve number method and also to
account for the effects of management practices on soil prop‐
erties in a more rational manner. However, the previously dis‐
cussed King et al. (1999) and Kannan et al. (2007b) SWAT
applications did not find any advantage to using the Green‐
Ampt approach, as compared to the curve number method.
These results lend support to the viewpoint expressed by
Ponce and Hawkins (1996) that alternative point infiltration
techniques, including the Green‐Ampt method, have not
shown a clear superiority to the curve number method.

Improved SWAT hydrologic predictions could potentially
be obtained through modifications in the curve number meth‐
odology and/or incorporation of more complex routines. Bo‐
rah et al. (2007) propose inserting a combined curve number‐
kinematic wave methodology used in DWSM into SWAT,
which was found to result in improved simulation of daily
runoff volumes for the 8,400 km2 Little Wabash River wa‐
tershed in Illinois. Bryant et al. (2006) propose modifications
of the curve number initial abstraction term, as a function of
soil physical characteristics and management practices, that
could result in more accurate simulation of extreme (low and
high) runoff events. Model and/or data input modifications
would be needed to address phenomena such as variable
source area (VSA) saturated excess runoff, which dominants
runoff in some regions including the northeast U.S., where
downslope VSA saturated discharge often occurs due to sub‐
surface interflow over relatively impermeable material (Ag‐
new et al., 2006; Walter et al., 2000). Steenhuis (2007) has
developed a method of reclassifying soil types and associated
curve numbers that provides a more accurate accounting of
VSA‐driven runoff and pollutant loss for a small watershed
in New York. The modified SWAT model described by
Watson et al. (2005), which accounts for VSA-dominated
hydrology in southwest Victoria, Australia, by incorporating
a saturated excess runoff routine in SWAT, may also provide
useful insights.

HYDROLOGIC RESPONSE UNITS (HRUS)
The incorporation of nonspatial HRUs in SWAT has sup‐

ported adaptation of the model to virtually any watershed,
ranging in size from field plots to entire river basins. The fact
that the HRUs are not landscape dependent has kept the mod‐
el simple while allowing soil and land use heterogeneity to
be accounted for within each subwatershed. At the same
time, the nonspatial aspect of the HRUs is a key weakness of
the model. This approach ignores flow and pollutant routing
within a subwatershed, thus treating the impact of pollutant
losses identically from all landscape positions within a sub‐
watershed. Thus, potential pollutant attenuation between the
source area and a stream is also ignored, as discussed by Bry‐
ant et al. (2006) for phosphorus movement. Explicit spatial
representation of riparian buffer zones, wetlands, and other
BMPs is also not possible with the current SWAT HRU ap‐
proach, as well as the ability to account for targeted place‐
ment of grassland or other land use within a given
subwatershed. Incorporation of greater spatial detail into
SWAT is being explored with the initial focus on developing
routing capabilities between distinct spatially defined land‐
scapes (Volk et al., 2005), which could be further subdivided
into HRUs.

SIMULATION OF BMPS
A key strength of SWAT is a flexible framework that al‐

lows the simulation of a wide variety of conservation practic‐
es and other BMPs, such as fertilizer and manure application
rate and timing, cover crops (perennial grasses), filter strips,
conservation tillage, irrigation management, flood‐preven-
tion structures, grassed waterways, and wetlands. The major‐
ity of conservation practices can be simulated in SWAT with
straightforward parameter changes. Arabi et al. (2007a) have
proposed standardized approaches for simulating specific
conservation practices in the model, including adjustment of
the parameters listed in table 4. Filter strips and field borders
can be simulated at the HRU level, based on empirical func‐
tions that account for filter strip trapping effects of bacteria
or sediment, nutrients, and pesticides (which are invoked
when the filter strip width parameter is set input to the mod‐
el). However, assessments of targeted filter strip placements
within a watershed are limited, due to the lack of HRU spatial
definition in SWAT. There are also further limitations in sim‐
ulating grassed waterways, due to the fact that channel rout‐
ing is not simulated at the HRU level. Arabi et al. (2007a)
proposed simulating grassed waterways by modifying sub‐
watershed channel parameters, as shown in table 4. However,
this approach is usually only viable for relatively small wa‐
tersheds, such as the example they present in their study.

Wetlands can be simulated in SWAT on the basis of one
wetland per subwatershed, which is assumed to capture dis‐
charge and pollutant loads from a user‐specified percentage
of the overall subwatershed. The ability to site wetlands with
more spatial accuracy within a subwatershed would clearly
provide improvements over the current SWAT wetland simu‐
lation approach, although this can potentially be overcome
for some applications by subdividing a watershed into small‐
er subwatersheds.

The lack of spatial detail in SWAT also hinders simulation
of riparian buffer zones and other conservation buffers,
which again need to be spatially defined at the landscape or
HRU level in order to correctly account for upslope pollutant
source areas and the pollutant mitigation impacts of the buff‐
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ers. The riparian and wetland processes recently incorporated
into the SWIM model (Hatterman et al., 2006) may prove
useful for improving current approaches used in SWAT.

BACTERIA LIFE CYCLE AND TRANSPORT

Benham et al. (2006) state that SWAT is one of two prima‐
ry models used for watershed‐scale bacteria fate and trans‐
port assessments in the U.S. The strengths of the SWAT
bacteria component include: (1) simultaneous assessment of
fecal coliform (as an indicator pathogen) and a more persis‐
tent second pathogen that possesses different growth/die‐off
characteristics,  (2) different rate constants that can be set for
soluble versus sediment‐bound bacteria, and (3) the ability to
account for multiple point and/or nonpoint bacteria sources
such as land‐applied livestock and poultry manure, wildlife
contributions,  and human sources such as septic tanks. Jamie‐
son et al. (2004) further point out that SWAT is the only model
that currently simulates partitioning of bacteria between ad‐
sorbed and non‐adsorbed fractions; however, they also state
that reliable partitioning data is currently not available.
Bacteria die‐off is simulated in SWAT on the basis of a first‐
order kinetic function (Neitsch et al., 2005a), as a function of
time and temperature. However, Benham et al. (2006), Ja‐
mieson et al. (2004), and Pachepsky et al. (2006) all cite sev‐
eral studies that show that other factors such as moisture
content, pH, nutrients, and soil type can influence die‐off
rates. Leaching of bacteria is also simulated in SWAT, al‐
though all leached bacteria are ultimately assumed to die off.
This conflicts with some actual observations in which patho‐
gen movement has been observed in subsurface flow (Pa‐
chepsky et al., 2006; Benham et al., 2006), which is
especially prevalent in tile‐drained areas (Jamieson et al.,
2004). Benham et al. (2006), Jamieson et al. (2004), and Pa‐
chepsky et al. (2006) list a number of research needs and
modeling improvements needed to perform more accurate
bacteria transport simulations with SWAT and other models
including: (1) more accurate characterization of bacteria
sources, (2) development of bacteria life cycle equations that
account for different phases of die‐off and the influence of
multiple factors on bacteria die‐off rates, (3) accounting of
subsurface flow bacteria movement including transport via
tile drains, and (4) depiction of bacteria deposition and resus‐

pension as function of sediment particles rather than just dis‐
charge.

IN‐STREAM KINETIC FUNCTIONS
The ability to simulate in‐stream water quality dynamics

is a definite strength of SWAT. However, Horn et al. (2004)
point out that very few SWAT‐related studies discuss whether
the QUAL2E‐based in‐stream kinetic functions were used or
not. Santhi et al. (2001a) opted to not use the in‐stream func‐
tions for their SWAT analysis of the Bosque River in central
Texas because the functions do not account for periphyton
(attached algae), which dominates phosphorus‐limited sys‐
tems including the Bosque River. This is a common limita‐
tion of most water quality models with in‐stream
components, which focus instead on just suspended algae.
Migliaccio et al. (2007) performed parallel SWAT analyses
of total P and nitrate (including nitrite) movement for the
60�km2 War Eagle Creek watershed in northwest Arkansas
by: (1) loosely coupling SWAT with QUAL2E (with the
SWAT in‐stream component turned off), and (2) executing
SWAT by itself with and without the in‐stream functions acti‐
vated. They found no statistical difference in the results gen‐
erated between the SWAT‐QUAL2E interface approach
versus the stand‐alone SWAT approach, or between the two
stand‐alone SWAT simulations. They concluded that further
testing and refinement of the SWAT in‐stream algorithms are
warranted, which is similar to the views expressed by Horn
et al. (2004). Further investigation is also needed to deter‐
mine if the QUAL2E modifications made in ESWAT should
be ported to SWAT, which are described by Van Griensven
and Bauwens (2003, 2005).

ADDITIONAL RESEARCH NEEDS

� Development of concentrated animal feeding opera‐
tion and related manure application routines, that sup‐
port simulation of surface and integrated manure
application techniques and their influence on nutrient
fractionation, distribution in runoff and soil, and sedi‐
ment loads. Current development is focused on a ma‐
nure cover layer.

� All aspects of stream routing need further testing and
refinement,  including the QUAL2E routines as dis‐
cussed above.

Table 4. Proposed key parameters to adjust for accounting of different conservation practice effects in SWAT (source: Arabi et al., 2007a).

Conservation Practice
Channel
Depth

Channel
Width

Channel
Erodibility

Factor

Channel
Cover
Factor

Channel
Manning

Roughness
Coeff.

Channel
Slope

Segment

Filter
Strip

Width[a]

Hillside
Slope

Length

Manning
N for

Overland
Flow

SCS
Runoff
Curve

Number

USLE
C

Factor

USLE
P

Factor

Contouring X X

Field border X

Filter strips X

Grade stabilization structures X X

Grassed waterways X X X X

Lined waterways X X X X

Parallel terraces X X X

Residue management[b] X X X

Stream channel stabilization X X X X

Strip cropping X X X X
[a] Setting a filter strip width triggers one of two filter strip trapping efficiency functions (one for bacteria and the other for sediment, pesticides, and nutrients)

that account for the effect of filter strip removal of pollutants.
[b] Soil incorporation of residue by tillage implements is also a key aspect of simulated residue management in SWAT.
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� Improved stream channel degradation and sediment de‐
position routines are needed to better describe sediment
transport, and to account for nutrient loads associated
with sediment movement, as discussed by Jha et al.
(2004a). Channel sediment routing could be improved by
accounting for sediment size effects, with separate algo‐
rithms for the wash and bed loads. Improved flood plain
deposition algorithms are needed, and a stream bank ero‐
sion routine should be incorporated.

� SWAT currently assumes that soil carbon contents are
static. This approach will be replaced by an updated
carbon cycling submodel that provides more realistic
accounting of carbon cycling processes.

� Improvements to the nitrogen cycling routines should
be investigated based on the suggestions given by Bo‐
rah et al. (2006). Other aspects of the nitrogen cycling
process should also be reviewed and updated if needed,
including current assumptions of plant nitrogen uptake.
Soil phosphorus cycling improvements have been initi‐
ated and will continue. The ability to simulate leaching
of soil phosphorus through the soil profile, and in later‐
al, groundwater, and tile flows, has recently been incor‐
porated into the model.

� Expansion of the plant parameter database is needed,
as pointed out by Heuvelmans et al. (2005), to support
a greater range of vegetation scenarios that can be sim‐
ulated in the model. In general, more extensive testing
of the crop growth component is needed, including re‐
visions to the crop parameters where needed.

� Modifications have been initiated by McKeown et al.
(2005) in a version of the model called SWAT2000‐C
to more accurately simulate the hydrologic balance and
other aspects of Canadian boreal forest systems includ‐
ing: (1) incorporation of a surface litter layer into the
soil profile, (2) accounting of water storage and release
by wetlands, and (3) improved simulation of spring
thaw generated runoff. These improvements will ulti‐
mately be grafted into SWAT2005.

� Advancements have been made in simulating subsur‐
face tile flows and nitrate losses (Du et al., 2005, 2006).
Current research is focused on incorporating a second
option, based on the DRAINMOD (Skaggs, 1982) ap‐
proach, that includes the effects of tile drain spacing
and shallow water table depth. Future research should
also be focused on controlled drainage BMPs.

� Routines for automated sensitivity, calibration, and in‐
put uncertainty analysis have been added to SWAT
(van�Griensven and Bauwens, 2003). These routines
are currently being tested on several watersheds, in‐
cluding accounting of uncertainty encountered in mea‐
sured water quality data, as discussed by Harmel et al.
(2006).

� The effects of atmospheric CO2 on plant growth need
to be revised to account for varying stomatal conduc‐
tance and leaf area responses as a function of plant spe‐
cies, similar to the procedure developed for SWAT‐G
by Eckhardt et al. (2003).

CONCLUSIONS
The wide range of SWAT applications that have been de‐

scribed here underscores that the model is a very flexible and

robust tool that can be used to simulate a variety of watershed
problems. The process of configuring SWAT for a given wa‐
tershed has also been greatly facilitated by the development
of GIS‐based interfaces, which provide a straightforward
means of translating digital land use, topographic, and soil
data into model inputs. It can be expected that additional sup‐
port tools will be created in the future to facilitate various ap‐
plications of SWAT. The ability of SWAT to replicate
hydrologic and/or pollutant loads at a variety of spatial scales
on an annual or monthly basis has been confirmed in numer‐
ous studies. However, the model performance has been inad‐
equate in some studies, especially when comparisons of
predicted output were made with time series of measured dai‐
ly flow and/or pollutant loss data. These weaker results un‐
derscore the need for continued testing of the model,
including more thorough uncertainty analyses, and ongoing
improvement of model routines. Some users have addressed
weaknesses in SWAT by component modifications, which
support more accurate simulation of specific processes or re‐
gions, or by interfacing SWAT with other models. Both of
these trends are expected to continue. The SWAT model will
continue to evolve in response to the needs of the ever‐
increasing worldwide user community and to provide im‐
proved simulation accuracy of key processes. A major
challenge of the ongoing evolution of the model will be meet‐
ing the desire for additional spatial complexity while main‐
taining ease of model use. This goal will be kept in focus as
the model continues to develop in the future.
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